forked from sammy-tri/drake
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbspline_basis.h
214 lines (183 loc) · 8.86 KB
/
bspline_basis.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#pragma once
#include <array>
#include <vector>
#include "drake/common/drake_assert.h"
#include "drake/common/drake_bool.h"
#include "drake/common/drake_copyable.h"
#include "drake/common/drake_throw.h"
#include "drake/common/name_value.h"
#include "drake/math/knot_vector_type.h"
namespace drake {
namespace math {
/** Given a set of non-descending breakpoints t₀ ≤ t₁ ≤ ⋅⋅⋅ ≤ tₘ, a B-spline
basis of order k is a set of n + 1 (where n = m - k) piecewise polynomials of
degree k - 1 defined over those breakpoints. The elements of this set are
called "B-splines". The vector (t₀, t₁, ..., tₘ)' is referred to as
the "knot vector" of the basis and its elements are referred to as "knots".
At a breakpoint with multiplicity p (i.e. a breakpoint that appears p times in
the knot vector), B-splines are guaranteed to have Cᵏ⁻ᵖ⁻¹ continuity.
A B-spline curve using a B-spline basis B, is a parametric curve mapping
parameter values in [tₖ₋₁, tₙ₊₁] to a vector space V. For t ∈ [tₖ₋₁, tₙ₊₁] the
value of the curve is given by the linear combination of n + 1 control points,
pᵢ ∈ V, with the elements of B evaluated at t.
For more information on B-splines and their uses, see (for example)
Patrikalakis et al. [1].
[1] https://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node15.html */
template <typename T>
class BsplineBasis final {
public:
DRAKE_DEFAULT_COPY_AND_MOVE_AND_ASSIGN(BsplineBasis);
BsplineBasis() : BsplineBasis<T>(0, {}) {}
/** Constructs a B-spline basis with the specified `order` and `knots`.
@pre `knots` is sorted in non-descending order.
@throws std::exception if knots.size() < 2 * order. */
BsplineBasis(int order, std::vector<T> knots);
/** Constructs a B-spline basis with the specified `order`,
`num_basis_functions`, `initial_parameter_value`, `final_parameter_value`,
and an auto-generated knot vector of the specified `type`.
@throws std::exception if num_basis_functions < order
@pre initial_parameter_value ≤ final_parameter_value */
BsplineBasis(int order, int num_basis_functions,
KnotVectorType type = KnotVectorType::kClampedUniform,
const T& initial_parameter_value = 0,
const T& final_parameter_value = 1);
#ifdef DRAKE_DOXYGEN_CXX
/** Conversion constructor. Constructs an instance of BsplineBasis<T> from a
double-valued basis. */
explicit BsplineBasis(const BsplineBasis<double>& other);
#else
template <typename U = T>
explicit BsplineBasis(const BsplineBasis<double>& other,
/* Prevents ambiguous declarations between default copy
constructor on double and conversion constructor on T = double.
The conversion constructor for T = double will fail to be
instantiated because the second, "hidden" parameter will fail to
be defined for U = double. */
typename std::enable_if_t<!std::is_same_v<U, double>>* = {})
: order_(other.order()) {
knots_.reserve(other.knots().size());
for (const auto& knot : other.knots()) {
knots_.push_back(T(knot));
}
}
#endif
/** The order of this B-spline basis (k in the class description). */
int order() const { return order_; }
/** The degree of the piecewise polynomials comprising this B-spline basis
(k - 1 in the class description). */
int degree() const { return order() - 1; }
/** The number of basis functions in this B-spline basis (n + 1 in the class
description). */
int num_basis_functions() const { return knots_.size() - order_; }
/** The knot vector of this B-spline basis (the vector (t₀, t₁, ..., tₘ)' in
the class description). */
const std::vector<T>& knots() const { return knots_; }
/** The minimum allowable parameter value for B-spline curves using this
basis (tₖ₋₁ in the class description). */
const T& initial_parameter_value() const { return knots()[order() - 1]; }
/** The maximum allowable parameter value for B-spline curves using this
basis (tₙ₊₁ in the class description). */
const T& final_parameter_value() const {
return knots()[num_basis_functions()];
}
/** For a `parameter_value` = t, the interval that contains it is the pair of
knot values [tᵢ, tᵢ₊₁] for the greatest i such that tᵢ ≤ t and
tᵢ < final_parameter_value(). This function returns that value of i.
@pre parameter_value ≥ initial_parameter_value()
@pre parameter_value ≤ final_parameter_value() */
int FindContainingInterval(const T& parameter_value) const;
/** Returns the indices of the basis functions which may evaluate to non-zero
values for some parameter value in `parameter_interval`; all other basis
functions are strictly zero over `parameter_interval`.
@pre parameter_interval[0] ≤ parameter_interval[1]
@pre parameter_interval[0] ≥ initial_parameter_value()
@pre parameter_interval[1] ≤ final_parameter_value() */
std::vector<int> ComputeActiveBasisFunctionIndices(
const std::array<T, 2>& parameter_interval) const;
/** Returns the indices of the basis functions which may evaluate to non-zero
values for `parameter_value`; all other basis functions are strictly zero at
this point.
@pre parameter_value ≥ initial_parameter_value()
@pre parameter_value ≤ final_parameter_value() */
std::vector<int> ComputeActiveBasisFunctionIndices(
const T& parameter_value) const;
/** Evaluates the B-spline curve defined by `this` and `control_points` at the
given `parameter_value`.
@param control_points Control points of the B-spline curve.
@param parameter_value Parameter value at which to evaluate the B-spline
curve defined by `this` and `control_points`.
@pre control_points.size() == num_basis_functions()
@pre parameter_value ≥ initial_parameter_value()
@pre parameter_value ≤ final_parameter_value() */
template <typename T_control_point>
T_control_point EvaluateCurve(
const std::vector<T_control_point>& control_points,
const T& parameter_value) const {
/* This function implements the de Boor algorithm. It uses the notation
from Patrikalakis et al. [1]. Since the depth of recursion is known
a-priori, the algorithm is flattened along the lines described in [2] to
avoid duplicate computations.
[1] https://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node18.html
[2] De Boor, Carl. "On calculating with B-splines." Journal of
Approximation theory 6.1 (1972): 50-62.
NOTE: The implementation of this method is included in the header so that
it can be used with custom values of T_control_point. */
DRAKE_DEMAND(static_cast<int>(control_points.size()) ==
num_basis_functions());
DRAKE_DEMAND(parameter_value >= initial_parameter_value());
DRAKE_DEMAND(parameter_value <= final_parameter_value());
// Define short names to match notation in [1].
const std::vector<T>& t = knots();
const T& t_bar = parameter_value;
const int k = order();
/* Find the index, 𝑙, of the greatest knot that is less than or equal to
t_bar and strictly less than final_parameter_value(). */
const int ell = FindContainingInterval(t_bar);
// The vector that stores the intermediate de Boor points (the pᵢʲ in [1]).
std::vector<T_control_point> p(order());
/* For j = 0, i goes from ell down to ell - (k - 1). Define r such that
i = ell - r. */
for (int r = 0; r < k; ++r) {
const int i = ell - r;
p.at(r) = control_points.at(i);
}
/* For j = 1, ..., k - 1, i goes from ell down to ell - (k - j - 1). Again,
i = ell - r. */
for (int j = 1; j < k; ++j) {
for (int r = 0; r < k - j; ++r) {
const int i = ell - r;
// α = (t_bar - t[i]) / (t[i + k - j] - t[i]);
const T alpha = (t_bar - t.at(i)) / (t.at(i + k - j) - t.at(i));
p.at(r) = (1.0 - alpha) * p.at(r + 1) + alpha * p.at(r);
}
}
return p.front();
}
/** Returns the value of the `i`-th basis function evaluated at
`parameter_value`. */
T EvaluateBasisFunctionI(int i, const T& parameter_value) const;
boolean<T> operator==(const BsplineBasis& other) const;
boolean<T> operator!=(const BsplineBasis& other) const;
/** Passes this object to an Archive.
Refer to @ref yaml_serialization "YAML Serialization" for background.
This method is only available when T = double. */
template <typename Archive>
#ifdef DRAKE_DOXYGEN_CXX
void
#else
// Restrict this method to T = double only; we must mix "Archive" into the
// conditional type for SFINAE to work, so we just check it against void.
std::enable_if_t<std::is_same_v<T, double> && !std::is_void_v<Archive>>
#endif
Serialize(Archive* a) {
a->Visit(MakeNameValue("order", &order_));
a->Visit(MakeNameValue("knots", &knots_));
DRAKE_THROW_UNLESS(CheckInvariants());
}
private:
bool CheckInvariants() const;
int order_{};
std::vector<T> knots_;
};
} // namespace math
} // namespace drake