forked from richzhang/colorization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
util.py
47 lines (35 loc) · 1.36 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from PIL import Image
import numpy as np
from skimage import color
import torch
import torch.nn.functional as F
from IPython import embed
def load_img(img_path):
out_np = np.asarray(Image.open(img_path))
if(out_np.ndim==2):
out_np = np.tile(out_np[:,:,None],3)
return out_np
def resize_img(img, HW=(256,256), resample=3):
return np.asarray(Image.fromarray(img).resize((HW[1],HW[0]), resample=resample))
def preprocess_img(img_rgb_orig, HW=(256,256), resample=3):
# return original size L and resized L as torch Tensors
img_rgb_rs = resize_img(img_rgb_orig, HW=HW, resample=resample)
img_lab_orig = color.rgb2lab(img_rgb_orig)
img_lab_rs = color.rgb2lab(img_rgb_rs)
img_l_orig = img_lab_orig[:,:,0]
img_l_rs = img_lab_rs[:,:,0]
tens_orig_l = torch.Tensor(img_l_orig)[None,None,:,:]
tens_rs_l = torch.Tensor(img_l_rs)[None,None,:,:]
return (tens_orig_l, tens_rs_l)
def postprocess_tens(tens_orig_l, out_ab, mode='bilinear'):
# tens_orig_l 1 x 1 x H_orig x W_orig
# out_ab 1 x 2 x H x W
HW_orig = tens_orig_l.shape[2:]
HW = out_ab.shape[2:]
# call resize function if needed
if(HW_orig[0]!=HW[0] or HW_orig[1]!=HW[1]):
out_ab_orig = F.interpolate(out_ab, size=HW_orig, mode='bilinear')
else:
out_ab_orig = out_ab
out_lab_orig = torch.cat((tens_orig_l, out_ab_orig), dim=1)
return color.lab2rgb(out_lab_orig.data.cpu().numpy()[0,...].transpose((1,2,0)))