forked from biolab/orange3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtree.py
378 lines (322 loc) · 13.4 KB
/
tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
"""Tree model used by Orange inducers, and Tree interface"""
from collections import OrderedDict
import numpy as np
import scipy.sparse as sp
from Orange.base import TreeModel as TreeModelInterface
class Node:
"""Tree node base class; instances of this class are also used as leaves
Attributes:
attr (Odange.data.Variable): The attribute used for splitting
attr_idx (int): The index of the attribute used for splitting
value (object): value used for prediction (e.g. class distribution)
children (list of Node): child branches
subset (numpy.array): indices of data instances in this node
"""
def __init__(self, attr, attr_idx, value):
self.attr = attr
self.attr_idx = attr_idx
self.value = value
self.children = []
self.subset = np.array([], dtype=np.int32)
self.description = ""
self.condition = ()
def descend(self, inst):
"""Return the child for the given data instance"""
return np.nan
def _set_child_descriptions(self, child, child_idx):
raise NotImplementedError
class DiscreteNode(Node):
"""Node for discrete attributes"""
def __init__(self, attr, attr_idx, value):
super().__init__(attr, attr_idx, value)
def descend(self, inst):
val = inst[self.attr_idx]
return np.nan if np.isnan(val) else int(val)
def _set_child_descriptions(self, child, child_idx, _):
child.condition = {child_idx}
child.description = self.attr.values[child_idx]
class MappedDiscreteNode(Node):
"""Node for discrete attributes with mapping to branches
Attributes:
mapping (numpy.ndarray): indices of branches for each attribute value
"""
def __init__(self, attr, attr_idx, mapping, value):
super().__init__(attr, attr_idx, value)
self.mapping = mapping
def descend(self, inst):
val = inst[self.attr_idx]
return np.nan if np.isnan(val) else self.mapping[int(val)]
@staticmethod
def branches_from_mapping(col_x, bit_mapping, n_values):
"""
Return mapping and branches corresponding to column x
Args:
col_x (np.ndarray): data in x-column
bit_mapping (int): bitmask that specifies which attribute values
go to the left (0) and right (1) branch
n_values (int): the number of attribute values
Returns:
A tuple of two numpy array: branch indices corresponding to
attribute values and to data instances
"""
mapping = np.array(
[int(x)
for x in reversed("{:>0{}b}".format(bit_mapping, n_values))] +
[-1], dtype=np.int16)
col_x = col_x.flatten() # also ensures copy
col_x[np.isnan(col_x)] = n_values
return mapping[:-1], mapping[col_x.astype(np.int16)]
def _set_child_descriptions(self, child, child_idx, conditions):
attr = self.attr
in_brnch = {j for j, v in enumerate(self.mapping) if v == child_idx}
if attr in conditions:
child.condition = conditions[attr] & in_brnch
else:
child.condition = in_brnch
vals = [attr.values[j] for j in sorted(child.condition)]
if not vals:
child.description = "(unreachable)"
else:
child.description = vals[0] if len(vals) == 1 else \
"{} or {}".format(", ".join(vals[:-1]), vals[-1])
class NumericNode(Node):
"""Node for numeric attributes
Attributes:
threshold (float): values lower or equal to this threshold go to the
left branch, larger to the right
"""
def __init__(self, attr, attr_idx, threshold, value):
super().__init__(attr, attr_idx, value)
self.threshold = threshold
def descend(self, inst):
val = inst[self.attr_idx]
return np.nan if np.isnan(val) else int(val > self.threshold)
def _set_child_descriptions(self, child, child_idx, conditions):
attr = self.attr
threshold = self.threshold
lower, upper = conditions.get(attr, (None, None))
if child_idx == 0 and (upper is None or threshold < upper):
upper = threshold
elif child_idx == 1 and (lower is None or threshold > lower):
lower = threshold
child.condition = (lower, upper)
child.description = \
"{} {}".format("≤>"[child_idx], attr.str_val(threshold))
class TreeModel(TreeModelInterface):
"""
Tree classifier with proper handling of nominal attributes and binarization
and the interface API for visualization.
"""
def __init__(self, data, root):
super().__init__(data.domain)
self.instances = data
self.root = root
self._values = self._thresholds = self._code = None
self._compile()
self._compute_descriptions()
def _prepare_predictions(self, n):
rootval = self.root.value
return np.empty((n,) + rootval.shape, dtype=rootval.dtype)
def get_values_by_nodes(self, X):
"""Prediction that does not use compiled trees; for demo only"""
n = len(X)
y = self._prepare_predictions(n)
for i in range(n):
x = X[i]
node = self.root
while True:
child_idx = node.descend(x)
if np.isnan(child_idx):
break
next_node = node.children[child_idx]
if next_node is None:
break
node = next_node
y[i] = node.value
return y
def get_values_in_python(self, X):
"""Prediction with compiled code, but in Python; for demo only"""
n = len(X)
y = self._prepare_predictions(n)
for i in range(n):
x = X[i]
node_ptr = 0
while self._code[node_ptr]:
val = x[self._code[node_ptr + 2]]
if np.isnan(val):
break
child_ptrs = self._code[node_ptr + 3:]
if self._code[node_ptr] == 3:
node_idx = self._code[node_ptr + 1]
next_node_ptr = child_ptrs[int(val > self._thresholds[node_idx])]
else:
next_node_ptr = child_ptrs[int(val)]
if next_node_ptr == -1:
break
node_ptr = next_node_ptr
node_idx = self._code[node_ptr + 1]
y[i] = self._values[node_idx]
return y
def get_values(self, X):
from Orange.classification import _tree_scorers
if sp.isspmatrix_csc(X):
func = _tree_scorers.compute_predictions_csc
elif sp.issparse(X):
func = _tree_scorers.compute_predictions_csr
X = X.tocsr()
else:
func = _tree_scorers.compute_predictions
return func(X, self._code, self._values, self._thresholds)
def predict(self, X):
predictions = self.get_values(X)
if self.domain.class_var.is_continuous:
return predictions[:, 0]
else:
sums = np.sum(predictions, axis=1)
# This can't happen because nodes with 0 instances are prohibited
# zeros = (sums == 0)
# predictions[zeros] = 1
# sums[zeros] = predictions.shape[1]
return predictions / sums[:, np.newaxis]
def node_count(self):
def _count(node):
return 1 + sum(_count(c) for c in node.children if c)
return _count(self.root)
def depth(self):
def _depth(node):
return 1 + max((_depth(child) for child in node.children if child),
default=0)
return _depth(self.root) - 1
def leaf_count(self):
def _count(node):
return not node.children or \
sum(_count(c) if c else 1 for c in node.children)
return _count(self.root)
def get_instances(self, nodes):
indices = self.get_indices(nodes)
if indices is not None:
return self.instances[indices]
def get_indices(self, nodes):
subsets = [node.subset for node in nodes]
if subsets:
return np.unique(np.hstack(subsets))
@staticmethod
def climb(node):
while node:
yield node
node = node.parent
@classmethod
def rule(cls, node):
rules = []
used_attrs = set()
for node in cls.climb(node):
if node.parent is None or node.parent.attr_idx in used_attrs:
continue
parent = node.parent
attr = parent.attr
name = attr.name
if isinstance(parent, NumericNode):
lower, upper = node.condition
if upper is None:
rules.append("{} > {}".format(name, attr.repr_val(lower)))
elif lower is None:
rules.append("{} ≤ {}".format(name, attr.repr_val(upper)))
else:
rules.append("{} < {} ≤ {}".format(
attr.repr_val(lower), name, attr.repr_val(upper)))
else:
rules.append("{}: {}".format(name, node.description))
used_attrs.add(node.parent.attr_idx)
return rules
def print_tree(self, node=None, level=0):
"""String representation of tree for debug purposees"""
if node is None:
node = self.root
res = ""
for child in node.children:
res += ("{:>20} {}{} {}\n".format(
str(child.value), " " * level, node.attr.name,
child.description))
res += self.print_tree(child, level + 1)
return res
NODE_TYPES = [Node, DiscreteNode, MappedDiscreteNode, NumericNode]
def _compile(self):
def _compute_sizes(node):
nonlocal nnodes, codesize
nnodes += 1
codesize += 2 # node type + node index
if isinstance(node, MappedDiscreteNode):
codesize += len(node.mapping)
if node.children:
codesize += 1 + len(node.children) # attr index + children ptrs
for child in node.children:
if child is not None:
_compute_sizes(child)
def _compile_node(node):
from Orange.classification._tree_scorers import NULL_BRANCH
# The node is compile into the following code (np.int32)
# [0] node type: index of type in NODE_TYPES)
# [1] node index: serves as index into values and thresholds
# If the node is not a leaf:
# [2] attribute index
# This is followed by an array of indices of the code for children
# nodes. The length of this array is 2 for numeric attributes or
# **the number of attribute values** for discrete attributes
# This is different from the number of branches if discrete values
# are mapped to branches
# Thresholds and class distributions are stored in separate
# 1-d and 2-d array arrays of type np.float, indexed by node index
# The lengths of both equal the node count; we would gain (if
# anything) by not reserving space for unused threshold space
if node is None:
return NULL_BRANCH
nonlocal code_ptr, node_idx
code_start = code_ptr
self._code[code_ptr] = self.NODE_TYPES.index(type(node))
self._code[code_ptr + 1] = node_idx
code_ptr += 2
self._values[node_idx] = node.value
if isinstance(node, NumericNode):
self._thresholds[node_idx] = node.threshold
node_idx += 1
# pylint: disable=unidiomatic-typecheck
if type(node) == Node:
return code_start
self._code[code_ptr] = node.attr_idx
code_ptr += 1
jump_table_size = 2 if isinstance(node, NumericNode) \
else len(node.attr.values)
jump_table = self._code[code_ptr:code_ptr + jump_table_size]
code_ptr += jump_table_size
child_indices = [_compile_node(child) for child in node.children]
if isinstance(node, MappedDiscreteNode):
jump_table[:] = np.array(child_indices)[node.mapping]
else:
jump_table[:] = child_indices
return code_start
nnodes = codesize = 0
_compute_sizes(self.root)
self._values = self._prepare_predictions(nnodes)
self._thresholds = np.empty(nnodes)
self._code = np.empty(codesize, np.int32)
code_ptr = node_idx = 0
_compile_node(self.root)
def _compute_descriptions(self):
def _compute_subtree(node):
for i, child in enumerate(node.children):
if child is None:
continue
child.parent = node
# These classes are friends
# pylint: disable=protected-access
node._set_child_descriptions(child, i, conditions)
old_cond = conditions.get(node.attr)
conditions[node.attr] = child.condition
_compute_subtree(child)
if old_cond is not None:
conditions[node.attr] = old_cond
else:
del conditions[node.attr]
conditions = OrderedDict()
self.root.parent = None
_compute_subtree(self.root)