forked from Mq-Zhang1/HOIDiffusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference_base.py
289 lines (241 loc) · 7.93 KB
/
inference_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import argparse
import torch
from omegaconf import OmegaConf
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.modules.encoders.adapter import Adapter, StyleAdapter, Adapter_light, CoAdapter
from ldm.modules.extra_condition.api import ExtraCondition
from ldm.util import fix_cond_shapes, load_model_from_config, read_state_dict
DEFAULT_NEGATIVE_PROMPT = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
'fewer digits, cropped, worst quality, low quality'
def get_base_argument_parser() -> argparse.ArgumentParser:
"""get the base argument parser for inference scripts"""
parser = argparse.ArgumentParser()
parser.add_argument(
'--outdir',
type=str,
help='dir to write results to',
default=None,
)
parser.add_argument(
'--prompt',
type=str,
nargs='?',
default=None,
help='positive prompt',
)
parser.add_argument(
'--neg_prompt',
type=str,
default=DEFAULT_NEGATIVE_PROMPT,
help='negative prompt',
)
parser.add_argument(
'--cond_path',
type=str,
default=None,
help='condition image path',
)
parser.add_argument(
'--cond_inp_type',
type=str,
default='image',
help='the type of the input condition image, take depth T2I as example, the input can be raw image, '
'which depth will be calculated, or the input can be a directly a depth map image',
)
parser.add_argument(
'--sampler',
type=str,
default='ddim',
choices=['ddim', 'plms'],
help='sampling algorithm, currently, only ddim and plms are supported, more are on the way',
)
parser.add_argument(
'--steps',
type=int,
default=50,
help='number of sampling steps',
)
parser.add_argument(
'--sd_ckpt',
type=str,
default='models/sd-v1-4.ckpt',
help='path to checkpoint of stable diffusion model, both .ckpt and .safetensor are supported',
)
parser.add_argument(
'--vae_ckpt',
type=str,
default=None,
help='vae checkpoint, anime SD models usually have seperate vae ckpt that need to be loaded',
)
parser.add_argument(
'--adapter_ckpt',
type=str,
default=None,
help='path to checkpoint of adapter',
)
parser.add_argument(
'--config',
type=str,
default='configs/sd-v1-inference.yaml',
help='path to config which constructs SD model',
)
parser.add_argument(
'--max_resolution',
type=float,
default=512 * 512,
help='max image height * width, only for computer with limited vram',
)
parser.add_argument(
'--resize_short_edge',
type=int,
default=None,
help='resize short edge of the input image, if this arg is set, max_resolution will not be used',
)
parser.add_argument(
'--C',
type=int,
default=4,
help='latent channels',
)
parser.add_argument(
'--f',
type=int,
default=8,
help='downsampling factor',
)
parser.add_argument(
'--scale',
type=float,
default=7.5,
help='unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))',
)
parser.add_argument(
'--cond_tau',
type=float,
default=1.0,
help='timestamp parameter that determines until which step the adapter is applied, '
'similar as Prompt-to-Prompt tau',
)
parser.add_argument(
'--style_cond_tau',
type=float,
default=1.0,
help='timestamp parameter that determines until which step the adapter is applied, '
'similar as Prompt-to-Prompt tau',
)
parser.add_argument(
'--cond_weight',
type=float,
default=1.0,
help='the adapter features are multiplied by the cond_weight. The larger the cond_weight, the more aligned '
'the generated image and condition will be, but the generated quality may be reduced',
)
parser.add_argument(
'--seed',
type=int,
default=42,
)
parser.add_argument(
'--n_samples',
type=int,
default=4,
help='# of samples to generate',
)
return parser
def get_sd_models(opt):
"""
build stable diffusion model, sampler
"""
# SD
config = OmegaConf.load(f"{opt.config}")
model = load_model_from_config(config, opt.sd_ckpt, opt.vae_ckpt)
sd_model = model.to(opt.device)
# sampler
if opt.sampler == 'plms':
sampler = PLMSSampler(model)
elif opt.sampler == 'ddim':
sampler = DDIMSampler(model)
else:
raise NotImplementedError
return sd_model, sampler
def get_t2i_adapter_models(opt):
config = OmegaConf.load(f"{opt.config}")
model = load_model_from_config(config, opt.sd_ckpt, opt.vae_ckpt)
adapter_ckpt_path = getattr(opt, f'{opt.which_cond}_adapter_ckpt', None)
if adapter_ckpt_path is None:
adapter_ckpt_path = getattr(opt, 'adapter_ckpt')
adapter_ckpt = read_state_dict(adapter_ckpt_path)
new_state_dict = {}
for k, v in adapter_ckpt.items():
if not k.startswith('adapter.'):
new_state_dict[f'adapter.{k}'] = v
else:
new_state_dict[k] = v
m, u = model.load_state_dict(new_state_dict, strict=False)
if len(u) > 0:
print(f"unexpected keys in loading adapter ckpt {adapter_ckpt_path}:")
print(u)
model = model.to(opt.device)
# sampler
if opt.sampler == 'plms':
sampler = PLMSSampler(model)
elif opt.sampler == 'ddim':
sampler = DDIMSampler(model)
else:
raise NotImplementedError
return model, sampler
def get_cond_ch(cond_type: ExtraCondition):
if cond_type == ExtraCondition.sketch or cond_type == ExtraCondition.canny:
return 1
return 3
def get_adapters(opt, cond_type: ExtraCondition):
adapter = {}
cond_weight = getattr(opt, f'{cond_type.name}_weight', None)
if cond_weight is None:
cond_weight = getattr(opt, 'cond_weight')
adapter['cond_weight'] = cond_weight
adapter['model'] = CoAdapter(w1 = 1, w2 = 1, w3 = 1).to(opt.device)
ckpt_path = getattr(opt, f'{cond_type.name}_adapter_ckpt', None)
if ckpt_path is None:
ckpt_path = getattr(opt, 'adapter_ckpt')
state_dict = read_state_dict(ckpt_path)
new_state_dict = {}
for k, v in state_dict.items():
if k.startswith('adapter.'):
new_state_dict[k[len('adapter.'):]] = v
else:
new_state_dict[k] = v
adapter['model'].load_state_dict(new_state_dict)
return adapter
def diffusion_inference(opt, model, sampler, adapter_features, append_to_context=None, keypoint_feat=None):
# get text embedding
if not isinstance(opt.prompt, list):
opt.prompt = [opt.prompt]
c = model.module.get_learned_conditioning(opt.prompt)
if opt.scale != 1.0:
uc = model.module.get_learned_conditioning([opt.neg_prompt]*len(opt.prompt))
else:
uc = None
c, uc = fix_cond_shapes(model.module, c, uc)
if not hasattr(opt, 'H'):
opt.H = 512
opt.W = 512
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
samples_latents, _ = sampler.sample(
S=opt.steps,
conditioning=c,
batch_size=c.shape[0],
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
x_T=None,
features_adapter=adapter_features,
append_to_context=append_to_context,
cond_tau=opt.cond_tau,
style_cond_tau=opt.style_cond_tau,
)
x_samples = model.module.decode_first_stage(samples_latents)
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
return x_samples