forked from pytorch/vision
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_extended_models.py
503 lines (437 loc) · 17.7 KB
/
test_extended_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
import copy
import os
import pickle
import pytest
import test_models as TM
import torch
from common_extended_utils import get_file_size_mb, get_ops
from torchvision import models
from torchvision.models import get_model_weights, Weights, WeightsEnum
from torchvision.models._utils import handle_legacy_interface
from torchvision.models.detection.backbone_utils import mobilenet_backbone, resnet_fpn_backbone
run_if_test_with_extended = pytest.mark.skipif(
os.getenv("PYTORCH_TEST_WITH_EXTENDED", "0") != "1",
reason="Extended tests are disabled by default. Set PYTORCH_TEST_WITH_EXTENDED=1 to run them.",
)
@pytest.mark.parametrize(
"name, model_class",
[
("resnet50", models.ResNet),
("retinanet_resnet50_fpn_v2", models.detection.RetinaNet),
("raft_large", models.optical_flow.RAFT),
("quantized_resnet50", models.quantization.QuantizableResNet),
("lraspp_mobilenet_v3_large", models.segmentation.LRASPP),
("mvit_v1_b", models.video.MViT),
],
)
def test_get_model(name, model_class):
assert isinstance(models.get_model(name), model_class)
@pytest.mark.parametrize(
"name, model_fn",
[
("resnet50", models.resnet50),
("retinanet_resnet50_fpn_v2", models.detection.retinanet_resnet50_fpn_v2),
("raft_large", models.optical_flow.raft_large),
("quantized_resnet50", models.quantization.resnet50),
("lraspp_mobilenet_v3_large", models.segmentation.lraspp_mobilenet_v3_large),
("mvit_v1_b", models.video.mvit_v1_b),
],
)
def test_get_model_builder(name, model_fn):
assert models.get_model_builder(name) == model_fn
@pytest.mark.parametrize(
"name, weight",
[
("resnet50", models.ResNet50_Weights),
("retinanet_resnet50_fpn_v2", models.detection.RetinaNet_ResNet50_FPN_V2_Weights),
("raft_large", models.optical_flow.Raft_Large_Weights),
("quantized_resnet50", models.quantization.ResNet50_QuantizedWeights),
("lraspp_mobilenet_v3_large", models.segmentation.LRASPP_MobileNet_V3_Large_Weights),
("mvit_v1_b", models.video.MViT_V1_B_Weights),
],
)
def test_get_model_weights(name, weight):
assert models.get_model_weights(name) == weight
@pytest.mark.parametrize("copy_fn", [copy.copy, copy.deepcopy])
@pytest.mark.parametrize(
"name",
[
"resnet50",
"retinanet_resnet50_fpn_v2",
"raft_large",
"quantized_resnet50",
"lraspp_mobilenet_v3_large",
"mvit_v1_b",
],
)
def test_weights_copyable(copy_fn, name):
for weights in list(models.get_model_weights(name)):
# It is somewhat surprising that (deep-)copying is an identity operation here, but this is the default behavior
# of enums: https://docs.python.org/3/howto/enum.html#enum-members-aka-instances
# Checking for equality, i.e. `==`, is sufficient (and even preferable) for our use case, should we need to drop
# support for the identity operation in the future.
assert copy_fn(weights) is weights
@pytest.mark.parametrize(
"name",
[
"resnet50",
"retinanet_resnet50_fpn_v2",
"raft_large",
"quantized_resnet50",
"lraspp_mobilenet_v3_large",
"mvit_v1_b",
],
)
def test_weights_deserializable(name):
for weights in list(models.get_model_weights(name)):
# It is somewhat surprising that deserialization is an identity operation here, but this is the default behavior
# of enums: https://docs.python.org/3/howto/enum.html#enum-members-aka-instances
# Checking for equality, i.e. `==`, is sufficient (and even preferable) for our use case, should we need to drop
# support for the identity operation in the future.
assert pickle.loads(pickle.dumps(weights)) is weights
def get_models_from_module(module):
return [
v.__name__
for k, v in module.__dict__.items()
if callable(v) and k[0].islower() and k[0] != "_" and k not in models._api.__all__
]
@pytest.mark.parametrize(
"module", [models, models.detection, models.quantization, models.segmentation, models.video, models.optical_flow]
)
def test_list_models(module):
a = set(get_models_from_module(module))
b = set(x.replace("quantized_", "") for x in models.list_models(module))
assert len(b) > 0
assert a == b
@pytest.mark.parametrize(
"include_filters",
[
None,
[],
(),
"",
"*resnet*",
["*alexnet*"],
"*not-existing-model-for-test?",
["*resnet*", "*alexnet*"],
["*resnet*", "*alexnet*", "*not-existing-model-for-test?"],
("*resnet*", "*alexnet*"),
set(["*resnet*", "*alexnet*"]),
],
)
@pytest.mark.parametrize(
"exclude_filters",
[
None,
[],
(),
"",
"*resnet*",
["*alexnet*"],
["*not-existing-model-for-test?"],
["resnet34", "*not-existing-model-for-test?"],
["resnet34", "*resnet1*"],
("resnet34", "*resnet1*"),
set(["resnet34", "*resnet1*"]),
],
)
def test_list_models_filters(include_filters, exclude_filters):
actual = set(models.list_models(models, include=include_filters, exclude=exclude_filters))
classification_models = set(get_models_from_module(models))
if isinstance(include_filters, str):
include_filters = [include_filters]
if isinstance(exclude_filters, str):
exclude_filters = [exclude_filters]
if include_filters:
expected = set()
for include_f in include_filters:
include_f = include_f.strip("*?")
expected = expected | set(x for x in classification_models if include_f in x)
else:
expected = classification_models
if exclude_filters:
for exclude_f in exclude_filters:
exclude_f = exclude_f.strip("*?")
if exclude_f != "":
a_exclude = set(x for x in classification_models if exclude_f in x)
expected = expected - a_exclude
assert expected == actual
@pytest.mark.parametrize(
"name, weight",
[
("ResNet50_Weights.IMAGENET1K_V1", models.ResNet50_Weights.IMAGENET1K_V1),
("ResNet50_Weights.DEFAULT", models.ResNet50_Weights.IMAGENET1K_V2),
(
"ResNet50_QuantizedWeights.DEFAULT",
models.quantization.ResNet50_QuantizedWeights.IMAGENET1K_FBGEMM_V2,
),
(
"ResNet50_QuantizedWeights.IMAGENET1K_FBGEMM_V1",
models.quantization.ResNet50_QuantizedWeights.IMAGENET1K_FBGEMM_V1,
),
],
)
def test_get_weight(name, weight):
assert models.get_weight(name) == weight
@pytest.mark.parametrize(
"model_fn",
TM.list_model_fns(models)
+ TM.list_model_fns(models.detection)
+ TM.list_model_fns(models.quantization)
+ TM.list_model_fns(models.segmentation)
+ TM.list_model_fns(models.video)
+ TM.list_model_fns(models.optical_flow),
)
def test_naming_conventions(model_fn):
weights_enum = get_model_weights(model_fn)
assert weights_enum is not None
assert len(weights_enum) == 0 or hasattr(weights_enum, "DEFAULT")
detection_models_input_dims = {
"fasterrcnn_mobilenet_v3_large_320_fpn": (320, 320),
"fasterrcnn_mobilenet_v3_large_fpn": (800, 800),
"fasterrcnn_resnet50_fpn": (800, 800),
"fasterrcnn_resnet50_fpn_v2": (800, 800),
"fcos_resnet50_fpn": (800, 800),
"keypointrcnn_resnet50_fpn": (1333, 1333),
"maskrcnn_resnet50_fpn": (800, 800),
"maskrcnn_resnet50_fpn_v2": (800, 800),
"retinanet_resnet50_fpn": (800, 800),
"retinanet_resnet50_fpn_v2": (800, 800),
"ssd300_vgg16": (300, 300),
"ssdlite320_mobilenet_v3_large": (320, 320),
}
@pytest.mark.parametrize(
"model_fn",
TM.list_model_fns(models)
+ TM.list_model_fns(models.detection)
+ TM.list_model_fns(models.quantization)
+ TM.list_model_fns(models.segmentation)
+ TM.list_model_fns(models.video)
+ TM.list_model_fns(models.optical_flow),
)
@run_if_test_with_extended
def test_schema_meta_validation(model_fn):
if model_fn.__name__ == "maskrcnn_resnet50_fpn_v2":
pytest.skip(reason="FIXME https://github.com/pytorch/vision/issues/7349")
# list of all possible supported high-level fields for weights meta-data
permitted_fields = {
"backend",
"categories",
"keypoint_names",
"license",
"_metrics",
"min_size",
"min_temporal_size",
"num_params",
"recipe",
"unquantized",
"_docs",
"_ops",
"_file_size",
}
# mandatory fields for each computer vision task
classification_fields = {"categories", ("_metrics", "ImageNet-1K", "acc@1"), ("_metrics", "ImageNet-1K", "acc@5")}
defaults = {
"all": {"_metrics", "min_size", "num_params", "recipe", "_docs", "_file_size", "_ops"},
"models": classification_fields,
"detection": {"categories", ("_metrics", "COCO-val2017", "box_map")},
"quantization": classification_fields | {"backend", "unquantized"},
"segmentation": {
"categories",
("_metrics", "COCO-val2017-VOC-labels", "miou"),
("_metrics", "COCO-val2017-VOC-labels", "pixel_acc"),
},
"video": {"categories", ("_metrics", "Kinetics-400", "acc@1"), ("_metrics", "Kinetics-400", "acc@5")},
"optical_flow": set(),
}
model_name = model_fn.__name__
module_name = model_fn.__module__.split(".")[-2]
expected_fields = defaults["all"] | defaults[module_name]
weights_enum = get_model_weights(model_fn)
if len(weights_enum) == 0:
pytest.skip(f"Model '{model_name}' doesn't have any pre-trained weights.")
problematic_weights = {}
incorrect_meta = []
bad_names = []
for w in weights_enum:
actual_fields = set(w.meta.keys())
actual_fields |= set(
("_metrics", dataset, metric_key)
for dataset in w.meta.get("_metrics", {}).keys()
for metric_key in w.meta.get("_metrics", {}).get(dataset, {}).keys()
)
missing_fields = expected_fields - actual_fields
unsupported_fields = set(w.meta.keys()) - permitted_fields
if missing_fields or unsupported_fields:
problematic_weights[w] = {"missing": missing_fields, "unsupported": unsupported_fields}
if w == weights_enum.DEFAULT or any(w.meta[k] != weights_enum.DEFAULT.meta[k] for k in ["num_params", "_ops"]):
if module_name == "quantization":
# parameters() count doesn't work well with quantization, so we check against the non-quantized
unquantized_w = w.meta.get("unquantized")
if unquantized_w is not None:
if w.meta.get("num_params") != unquantized_w.meta.get("num_params"):
incorrect_meta.append((w, "num_params"))
# the methodology for quantized ops count doesn't work as well, so we take unquantized FLOPs
# instead
if w.meta["_ops"] != unquantized_w.meta.get("_ops"):
incorrect_meta.append((w, "_ops"))
else:
# loading the model and using it for parameter and ops verification
model = model_fn(weights=w)
if w.meta.get("num_params") != sum(p.numel() for p in model.parameters()):
incorrect_meta.append((w, "num_params"))
kwargs = {}
if model_name in detection_models_input_dims:
# detection models have non default height and width
height, width = detection_models_input_dims[model_name]
kwargs = {"height": height, "width": width}
if not model_fn.__name__.startswith("vit"):
# FIXME: https://github.com/pytorch/vision/issues/7871
calculated_ops = get_ops(model=model, weight=w, **kwargs)
if calculated_ops != w.meta["_ops"]:
incorrect_meta.append((w, "_ops"))
if not w.name.isupper():
bad_names.append(w)
if get_file_size_mb(w) != w.meta.get("_file_size"):
incorrect_meta.append((w, "_file_size"))
assert not problematic_weights
assert not incorrect_meta
assert not bad_names
@pytest.mark.parametrize(
"model_fn",
TM.list_model_fns(models)
+ TM.list_model_fns(models.detection)
+ TM.list_model_fns(models.quantization)
+ TM.list_model_fns(models.segmentation)
+ TM.list_model_fns(models.video)
+ TM.list_model_fns(models.optical_flow),
)
@run_if_test_with_extended
def test_transforms_jit(model_fn):
model_name = model_fn.__name__
weights_enum = get_model_weights(model_fn)
if len(weights_enum) == 0:
pytest.skip(f"Model '{model_name}' doesn't have any pre-trained weights.")
defaults = {
"models": {
"input_shape": (1, 3, 224, 224),
},
"detection": {
"input_shape": (3, 300, 300),
},
"quantization": {
"input_shape": (1, 3, 224, 224),
},
"segmentation": {
"input_shape": (1, 3, 520, 520),
},
"video": {
"input_shape": (1, 3, 4, 112, 112),
},
"optical_flow": {
"input_shape": (1, 3, 128, 128),
},
}
module_name = model_fn.__module__.split(".")[-2]
kwargs = {**defaults[module_name], **TM._model_params.get(model_name, {})}
input_shape = kwargs.pop("input_shape")
x = torch.rand(input_shape)
if module_name == "optical_flow":
args = (x, x)
else:
if module_name == "video":
x = x.permute(0, 2, 1, 3, 4)
args = (x,)
problematic_weights = []
for w in weights_enum:
transforms = w.transforms()
try:
TM._check_jit_scriptable(transforms, args)
except Exception:
problematic_weights.append(w)
assert not problematic_weights
# With this filter, every unexpected warning will be turned into an error
@pytest.mark.filterwarnings("error")
class TestHandleLegacyInterface:
class ModelWeights(WeightsEnum):
Sentinel = Weights(url="https://pytorch.org", transforms=lambda x: x, meta=dict())
@pytest.mark.parametrize(
"kwargs",
[
pytest.param(dict(), id="empty"),
pytest.param(dict(weights=None), id="None"),
pytest.param(dict(weights=ModelWeights.Sentinel), id="Weights"),
],
)
def test_no_warn(self, kwargs):
@handle_legacy_interface(weights=("pretrained", self.ModelWeights.Sentinel))
def builder(*, weights=None):
pass
builder(**kwargs)
@pytest.mark.parametrize("pretrained", (True, False))
def test_pretrained_pos(self, pretrained):
@handle_legacy_interface(weights=("pretrained", self.ModelWeights.Sentinel))
def builder(*, weights=None):
pass
with pytest.warns(UserWarning, match="positional"):
builder(pretrained)
@pytest.mark.parametrize("pretrained", (True, False))
def test_pretrained_kw(self, pretrained):
@handle_legacy_interface(weights=("pretrained", self.ModelWeights.Sentinel))
def builder(*, weights=None):
pass
with pytest.warns(UserWarning, match="deprecated"):
builder(pretrained)
@pytest.mark.parametrize("pretrained", (True, False))
@pytest.mark.parametrize("positional", (True, False))
def test_equivalent_behavior_weights(self, pretrained, positional):
@handle_legacy_interface(weights=("pretrained", self.ModelWeights.Sentinel))
def builder(*, weights=None):
pass
args, kwargs = ((pretrained,), dict()) if positional else ((), dict(pretrained=pretrained))
with pytest.warns(UserWarning, match=f"weights={self.ModelWeights.Sentinel if pretrained else None}"):
builder(*args, **kwargs)
def test_multi_params(self):
weights_params = ("weights", "weights_other")
pretrained_params = [param.replace("weights", "pretrained") for param in weights_params]
@handle_legacy_interface(
**{
weights_param: (pretrained_param, self.ModelWeights.Sentinel)
for weights_param, pretrained_param in zip(weights_params, pretrained_params)
}
)
def builder(*, weights=None, weights_other=None):
pass
for pretrained_param in pretrained_params:
with pytest.warns(UserWarning, match="deprecated"):
builder(**{pretrained_param: True})
def test_default_callable(self):
@handle_legacy_interface(
weights=(
"pretrained",
lambda kwargs: self.ModelWeights.Sentinel if kwargs["flag"] else None,
)
)
def builder(*, weights=None, flag):
pass
with pytest.warns(UserWarning, match="deprecated"):
builder(pretrained=True, flag=True)
with pytest.raises(ValueError, match="weights"):
builder(pretrained=True, flag=False)
@pytest.mark.parametrize(
"model_fn",
[fn for fn in TM.list_model_fns(models) if fn.__name__ not in {"vit_h_14", "regnet_y_128gf"}]
+ TM.list_model_fns(models.detection)
+ TM.list_model_fns(models.quantization)
+ TM.list_model_fns(models.segmentation)
+ TM.list_model_fns(models.video)
+ TM.list_model_fns(models.optical_flow)
+ [
lambda pretrained: resnet_fpn_backbone(backbone_name="resnet50", pretrained=pretrained),
lambda pretrained: mobilenet_backbone(backbone_name="mobilenet_v2", fpn=False, pretrained=pretrained),
],
)
@run_if_test_with_extended
def test_pretrained_deprecation(self, model_fn):
with pytest.warns(UserWarning, match="deprecated"):
model_fn(pretrained=True)