forked from pytorch/vision
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_functional_tensor.py
1299 lines (1033 loc) · 48.7 KB
/
test_functional_tensor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import colorsys
import itertools
import math
import os
import warnings
from functools import partial
from typing import Sequence
import numpy as np
import PIL.Image
import pytest
import torch
import torchvision.transforms as T
import torchvision.transforms._functional_pil as F_pil
import torchvision.transforms._functional_tensor as F_t
import torchvision.transforms.functional as F
from common_utils import (
_assert_approx_equal_tensor_to_pil,
_assert_equal_tensor_to_pil,
_create_data,
_create_data_batch,
_test_fn_on_batch,
assert_equal,
cpu_and_cuda,
needs_cuda,
)
from torchvision.transforms import InterpolationMode
NEAREST, NEAREST_EXACT, BILINEAR, BICUBIC = (
InterpolationMode.NEAREST,
InterpolationMode.NEAREST_EXACT,
InterpolationMode.BILINEAR,
InterpolationMode.BICUBIC,
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("fn", [F.get_image_size, F.get_image_num_channels, F.get_dimensions])
def test_image_sizes(device, fn):
script_F = torch.jit.script(fn)
img_tensor, pil_img = _create_data(16, 18, 3, device=device)
value_img = fn(img_tensor)
value_pil_img = fn(pil_img)
assert value_img == value_pil_img
value_img_script = script_F(img_tensor)
assert value_img == value_img_script
batch_tensors = _create_data_batch(16, 18, 3, num_samples=4, device=device)
value_img_batch = fn(batch_tensors)
assert value_img == value_img_batch
@needs_cuda
def test_scale_channel():
"""Make sure that _scale_channel gives the same results on CPU and GPU as
histc or bincount are used depending on the device.
"""
# TODO: when # https://github.com/pytorch/pytorch/issues/53194 is fixed,
# only use bincount and remove that test.
size = (1_000,)
img_chan = torch.randint(0, 256, size=size).to("cpu")
scaled_cpu = F_t._scale_channel(img_chan)
scaled_cuda = F_t._scale_channel(img_chan.to("cuda"))
assert_equal(scaled_cpu, scaled_cuda.to("cpu"))
class TestRotate:
ALL_DTYPES = [None, torch.float32, torch.float64, torch.float16]
scripted_rotate = torch.jit.script(F.rotate)
IMG_W = 26
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("height, width", [(7, 33), (26, IMG_W), (32, IMG_W)])
@pytest.mark.parametrize(
"center",
[
None,
(int(IMG_W * 0.3), int(IMG_W * 0.4)),
[int(IMG_W * 0.5), int(IMG_W * 0.6)],
],
)
@pytest.mark.parametrize("dt", ALL_DTYPES)
@pytest.mark.parametrize("angle", range(-180, 180, 34))
@pytest.mark.parametrize("expand", [True, False])
@pytest.mark.parametrize(
"fill",
[
None,
[0, 0, 0],
(1, 2, 3),
[255, 255, 255],
[
1,
],
(2.0,),
],
)
@pytest.mark.parametrize("fn", [F.rotate, scripted_rotate])
def test_rotate(self, device, height, width, center, dt, angle, expand, fill, fn):
tensor, pil_img = _create_data(height, width, device=device)
if dt == torch.float16 and torch.device(device).type == "cpu":
# skip float16 on CPU case
return
if dt is not None:
tensor = tensor.to(dtype=dt)
f_pil = int(fill[0]) if fill is not None and len(fill) == 1 else fill
out_pil_img = F.rotate(pil_img, angle=angle, interpolation=NEAREST, expand=expand, center=center, fill=f_pil)
out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))
out_tensor = fn(tensor, angle=angle, interpolation=NEAREST, expand=expand, center=center, fill=fill).cpu()
if out_tensor.dtype != torch.uint8:
out_tensor = out_tensor.to(torch.uint8)
assert (
out_tensor.shape == out_pil_tensor.shape
), f"{(height, width, NEAREST, dt, angle, expand, center)}: {out_tensor.shape} vs {out_pil_tensor.shape}"
num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
# Tolerance : less than 3% of different pixels
assert ratio_diff_pixels < 0.03, (
f"{(height, width, NEAREST, dt, angle, expand, center, fill)}: "
f"{ratio_diff_pixels}\n{out_tensor[0, :7, :7]} vs \n"
f"{out_pil_tensor[0, :7, :7]}"
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dt", ALL_DTYPES)
def test_rotate_batch(self, device, dt):
if dt == torch.float16 and device == "cpu":
# skip float16 on CPU case
return
batch_tensors = _create_data_batch(26, 36, num_samples=4, device=device)
if dt is not None:
batch_tensors = batch_tensors.to(dtype=dt)
center = (20, 22)
_test_fn_on_batch(batch_tensors, F.rotate, angle=32, interpolation=NEAREST, expand=True, center=center)
def test_rotate_interpolation_type(self):
tensor, _ = _create_data(26, 26)
res1 = F.rotate(tensor, 45, interpolation=PIL.Image.BILINEAR)
res2 = F.rotate(tensor, 45, interpolation=BILINEAR)
assert_equal(res1, res2)
class TestAffine:
ALL_DTYPES = [None, torch.float32, torch.float64, torch.float16]
scripted_affine = torch.jit.script(F.affine)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("height, width", [(26, 26), (32, 26)])
@pytest.mark.parametrize("dt", ALL_DTYPES)
def test_identity_map(self, device, height, width, dt):
# Tests on square and rectangular images
tensor, pil_img = _create_data(height, width, device=device)
if dt == torch.float16 and device == "cpu":
# skip float16 on CPU case
return
if dt is not None:
tensor = tensor.to(dtype=dt)
# 1) identity map
out_tensor = F.affine(tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)
assert_equal(tensor, out_tensor, msg=f"{out_tensor[0, :5, :5]} vs {tensor[0, :5, :5]}")
out_tensor = self.scripted_affine(
tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
)
assert_equal(tensor, out_tensor, msg=f"{out_tensor[0, :5, :5]} vs {tensor[0, :5, :5]}")
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("height, width", [(26, 26)])
@pytest.mark.parametrize("dt", ALL_DTYPES)
@pytest.mark.parametrize(
"angle, config",
[
(90, {"k": 1, "dims": (-1, -2)}),
(45, None),
(30, None),
(-30, None),
(-45, None),
(-90, {"k": -1, "dims": (-1, -2)}),
(180, {"k": 2, "dims": (-1, -2)}),
],
)
@pytest.mark.parametrize("fn", [F.affine, scripted_affine])
def test_square_rotations(self, device, height, width, dt, angle, config, fn):
# 2) Test rotation
tensor, pil_img = _create_data(height, width, device=device)
if dt == torch.float16 and device == "cpu":
# skip float16 on CPU case
return
if dt is not None:
tensor = tensor.to(dtype=dt)
out_pil_img = F.affine(
pil_img, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
)
out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1))).to(device)
out_tensor = fn(tensor, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)
if config is not None:
assert_equal(torch.rot90(tensor, **config), out_tensor)
if out_tensor.dtype != torch.uint8:
out_tensor = out_tensor.to(torch.uint8)
num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
# Tolerance : less than 6% of different pixels
assert ratio_diff_pixels < 0.06
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("height, width", [(32, 26)])
@pytest.mark.parametrize("dt", ALL_DTYPES)
@pytest.mark.parametrize("angle", [90, 45, 15, -30, -60, -120])
@pytest.mark.parametrize("fn", [F.affine, scripted_affine])
@pytest.mark.parametrize("center", [None, [0, 0]])
def test_rect_rotations(self, device, height, width, dt, angle, fn, center):
# Tests on rectangular images
tensor, pil_img = _create_data(height, width, device=device)
if dt == torch.float16 and device == "cpu":
# skip float16 on CPU case
return
if dt is not None:
tensor = tensor.to(dtype=dt)
out_pil_img = F.affine(
pil_img, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST, center=center
)
out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))
out_tensor = fn(
tensor, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST, center=center
).cpu()
if out_tensor.dtype != torch.uint8:
out_tensor = out_tensor.to(torch.uint8)
num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
# Tolerance : less than 3% of different pixels
assert ratio_diff_pixels < 0.03
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("height, width", [(26, 26), (32, 26)])
@pytest.mark.parametrize("dt", ALL_DTYPES)
@pytest.mark.parametrize("t", [[10, 12], (-12, -13)])
@pytest.mark.parametrize("fn", [F.affine, scripted_affine])
def test_translations(self, device, height, width, dt, t, fn):
# 3) Test translation
tensor, pil_img = _create_data(height, width, device=device)
if dt == torch.float16 and device == "cpu":
# skip float16 on CPU case
return
if dt is not None:
tensor = tensor.to(dtype=dt)
out_pil_img = F.affine(pil_img, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)
out_tensor = fn(tensor, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)
if out_tensor.dtype != torch.uint8:
out_tensor = out_tensor.to(torch.uint8)
_assert_equal_tensor_to_pil(out_tensor, out_pil_img)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("height, width", [(26, 26), (32, 26)])
@pytest.mark.parametrize("dt", ALL_DTYPES)
@pytest.mark.parametrize(
"a, t, s, sh, f",
[
(45.5, [5, 6], 1.0, [0.0, 0.0], None),
(33, (5, -4), 1.0, [0.0, 0.0], [0, 0, 0]),
(45, [-5, 4], 1.2, [0.0, 0.0], (1, 2, 3)),
(33, (-4, -8), 2.0, [0.0, 0.0], [255, 255, 255]),
(85, (10, -10), 0.7, [0.0, 0.0], [1]),
(0, [0, 0], 1.0, [35.0], (2.0,)),
(-25, [0, 0], 1.2, [0.0, 15.0], None),
(-45, [-10, 0], 0.7, [2.0, 5.0], None),
(-45, [-10, -10], 1.2, [4.0, 5.0], None),
(-90, [0, 0], 1.0, [0.0, 0.0], None),
],
)
@pytest.mark.parametrize("fn", [F.affine, scripted_affine])
def test_all_ops(self, device, height, width, dt, a, t, s, sh, f, fn):
# 4) Test rotation + translation + scale + shear
tensor, pil_img = _create_data(height, width, device=device)
if dt == torch.float16 and device == "cpu":
# skip float16 on CPU case
return
if dt is not None:
tensor = tensor.to(dtype=dt)
f_pil = int(f[0]) if f is not None and len(f) == 1 else f
out_pil_img = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh, interpolation=NEAREST, fill=f_pil)
out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))
out_tensor = fn(tensor, angle=a, translate=t, scale=s, shear=sh, interpolation=NEAREST, fill=f).cpu()
if out_tensor.dtype != torch.uint8:
out_tensor = out_tensor.to(torch.uint8)
num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
# Tolerance : less than 5% (cpu), 6% (cuda) of different pixels
tol = 0.06 if device == "cuda" else 0.05
assert ratio_diff_pixels < tol
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dt", ALL_DTYPES)
def test_batches(self, device, dt):
if dt == torch.float16 and device == "cpu":
# skip float16 on CPU case
return
batch_tensors = _create_data_batch(26, 36, num_samples=4, device=device)
if dt is not None:
batch_tensors = batch_tensors.to(dtype=dt)
_test_fn_on_batch(batch_tensors, F.affine, angle=-43, translate=[-3, 4], scale=1.2, shear=[4.0, 5.0])
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_interpolation_type(self, device):
tensor, pil_img = _create_data(26, 26, device=device)
res1 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=PIL.Image.BILINEAR)
res2 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=BILINEAR)
assert_equal(res1, res2)
def _get_data_dims_and_points_for_perspective():
# Ideally we would parametrize independently over data dims and points, but
# we want to tests on some points that also depend on the data dims.
# Pytest doesn't support covariant parametrization, so we do it somewhat manually here.
data_dims = [(26, 34), (26, 26)]
points = [
[[[0, 0], [33, 0], [33, 25], [0, 25]], [[3, 2], [32, 3], [30, 24], [2, 25]]],
[[[3, 2], [32, 3], [30, 24], [2, 25]], [[0, 0], [33, 0], [33, 25], [0, 25]]],
[[[3, 2], [32, 3], [30, 24], [2, 25]], [[5, 5], [30, 3], [33, 19], [4, 25]]],
]
dims_and_points = list(itertools.product(data_dims, points))
# up to here, we could just have used 2 @parametrized.
# Down below is the covarariant part as the points depend on the data dims.
n = 10
for dim in data_dims:
points += [(dim, T.RandomPerspective.get_params(dim[1], dim[0], i / n)) for i in range(n)]
return dims_and_points
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dims_and_points", _get_data_dims_and_points_for_perspective())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize("fill", (None, [0, 0, 0], [1, 2, 3], [255, 255, 255], [1], (2.0,)))
@pytest.mark.parametrize("fn", [F.perspective, torch.jit.script(F.perspective)])
def test_perspective_pil_vs_tensor(device, dims_and_points, dt, fill, fn):
if dt == torch.float16 and device == "cpu":
# skip float16 on CPU case
return
data_dims, (spoints, epoints) = dims_and_points
tensor, pil_img = _create_data(*data_dims, device=device)
if dt is not None:
tensor = tensor.to(dtype=dt)
interpolation = NEAREST
fill_pil = int(fill[0]) if fill is not None and len(fill) == 1 else fill
out_pil_img = F.perspective(
pil_img, startpoints=spoints, endpoints=epoints, interpolation=interpolation, fill=fill_pil
)
out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))
out_tensor = fn(tensor, startpoints=spoints, endpoints=epoints, interpolation=interpolation, fill=fill).cpu()
if out_tensor.dtype != torch.uint8:
out_tensor = out_tensor.to(torch.uint8)
num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
# Tolerance : less than 5% of different pixels
assert ratio_diff_pixels < 0.05
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dims_and_points", _get_data_dims_and_points_for_perspective())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
def test_perspective_batch(device, dims_and_points, dt):
if dt == torch.float16 and device == "cpu":
# skip float16 on CPU case
return
data_dims, (spoints, epoints) = dims_and_points
batch_tensors = _create_data_batch(*data_dims, num_samples=4, device=device)
if dt is not None:
batch_tensors = batch_tensors.to(dtype=dt)
# Ignore the equivalence between scripted and regular function on float16 cuda. The pixels at
# the border may be entirely different due to small rounding errors.
scripted_fn_atol = -1 if (dt == torch.float16 and device == "cuda") else 1e-8
_test_fn_on_batch(
batch_tensors,
F.perspective,
scripted_fn_atol=scripted_fn_atol,
startpoints=spoints,
endpoints=epoints,
interpolation=NEAREST,
)
def test_perspective_interpolation_type():
spoints = [[0, 0], [33, 0], [33, 25], [0, 25]]
epoints = [[3, 2], [32, 3], [30, 24], [2, 25]]
tensor = torch.randint(0, 256, (3, 26, 26))
res1 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=PIL.Image.BILINEAR)
res2 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=BILINEAR)
assert_equal(res1, res2)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize("size", [32, 26, [32], [32, 32], (32, 32), [26, 35]])
@pytest.mark.parametrize("max_size", [None, 34, 40, 1000])
@pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC, NEAREST, NEAREST_EXACT])
def test_resize(device, dt, size, max_size, interpolation):
if dt == torch.float16 and device == "cpu":
# skip float16 on CPU case
return
if max_size is not None and isinstance(size, Sequence) and len(size) != 1:
return # unsupported
torch.manual_seed(12)
script_fn = torch.jit.script(F.resize)
tensor, pil_img = _create_data(26, 36, device=device)
batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
if dt is not None:
# This is a trivial cast to float of uint8 data to test all cases
tensor = tensor.to(dt)
batch_tensors = batch_tensors.to(dt)
resized_tensor = F.resize(tensor, size=size, interpolation=interpolation, max_size=max_size, antialias=True)
resized_pil_img = F.resize(pil_img, size=size, interpolation=interpolation, max_size=max_size, antialias=True)
assert resized_tensor.size()[1:] == resized_pil_img.size[::-1]
if interpolation != NEAREST:
# We can not check values if mode = NEAREST, as results are different
# E.g. resized_tensor = [[a, a, b, c, d, d, e, ...]]
# E.g. resized_pil_img = [[a, b, c, c, d, e, f, ...]]
resized_tensor_f = resized_tensor
# we need to cast to uint8 to compare with PIL image
if resized_tensor_f.dtype == torch.uint8:
resized_tensor_f = resized_tensor_f.to(torch.float)
# Pay attention to high tolerance for MAE
_assert_approx_equal_tensor_to_pil(resized_tensor_f, resized_pil_img, tol=3.0)
if isinstance(size, int):
script_size = [size]
else:
script_size = size
resize_result = script_fn(tensor, size=script_size, interpolation=interpolation, max_size=max_size, antialias=True)
assert_equal(resized_tensor, resize_result)
_test_fn_on_batch(
batch_tensors, F.resize, size=script_size, interpolation=interpolation, max_size=max_size, antialias=True
)
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_resize_asserts(device):
tensor, pil_img = _create_data(26, 36, device=device)
res1 = F.resize(tensor, size=32, interpolation=PIL.Image.BILINEAR)
res2 = F.resize(tensor, size=32, interpolation=BILINEAR)
assert_equal(res1, res2)
for img in (tensor, pil_img):
exp_msg = "max_size should only be passed if size specifies the length of the smaller edge"
with pytest.raises(ValueError, match=exp_msg):
F.resize(img, size=(32, 34), max_size=35)
with pytest.raises(ValueError, match="max_size = 32 must be strictly greater"):
F.resize(img, size=32, max_size=32)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize("size", [[96, 72], [96, 420], [420, 72]])
@pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC])
def test_resize_antialias(device, dt, size, interpolation):
if dt == torch.float16 and device == "cpu":
# skip float16 on CPU case
return
torch.manual_seed(12)
script_fn = torch.jit.script(F.resize)
tensor, pil_img = _create_data(320, 290, device=device)
if dt is not None:
# This is a trivial cast to float of uint8 data to test all cases
tensor = tensor.to(dt)
resized_tensor = F.resize(tensor, size=size, interpolation=interpolation, antialias=True)
resized_pil_img = F.resize(pil_img, size=size, interpolation=interpolation, antialias=True)
assert resized_tensor.size()[1:] == resized_pil_img.size[::-1]
resized_tensor_f = resized_tensor
# we need to cast to uint8 to compare with PIL image
if resized_tensor_f.dtype == torch.uint8:
resized_tensor_f = resized_tensor_f.to(torch.float)
_assert_approx_equal_tensor_to_pil(resized_tensor_f, resized_pil_img, tol=0.5, msg=f"{size}, {interpolation}, {dt}")
accepted_tol = 1.0 + 1e-5
if interpolation == BICUBIC:
# this overall mean value to make the tests pass
# High value is mostly required for test cases with
# downsampling and upsampling where we can not exactly
# match PIL implementation.
accepted_tol = 15.0
_assert_approx_equal_tensor_to_pil(
resized_tensor_f, resized_pil_img, tol=accepted_tol, agg_method="max", msg=f"{size}, {interpolation}, {dt}"
)
if isinstance(size, int):
script_size = [
size,
]
else:
script_size = size
resize_result = script_fn(tensor, size=script_size, interpolation=interpolation, antialias=True)
assert_equal(resized_tensor, resize_result)
def test_resize_antialias_default_warning():
img = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8)
match = "The default value of the antialias"
with pytest.warns(UserWarning, match=match):
F.resize(img, size=(20, 20))
with pytest.warns(UserWarning, match=match):
F.resized_crop(img, 0, 0, 10, 10, size=(20, 20))
# For modes that aren't bicubic or bilinear, don't throw a warning
with warnings.catch_warnings():
warnings.simplefilter("error")
F.resize(img, size=(20, 20), interpolation=NEAREST)
F.resized_crop(img, 0, 0, 10, 10, size=(20, 20), interpolation=NEAREST)
def check_functional_vs_PIL_vs_scripted(
fn, fn_pil, fn_t, config, device, dtype, channels=3, tol=2.0 + 1e-10, agg_method="max"
):
script_fn = torch.jit.script(fn)
torch.manual_seed(15)
tensor, pil_img = _create_data(26, 34, channels=channels, device=device)
batch_tensors = _create_data_batch(16, 18, num_samples=4, channels=channels, device=device)
if dtype is not None:
tensor = F.convert_image_dtype(tensor, dtype)
batch_tensors = F.convert_image_dtype(batch_tensors, dtype)
out_fn_t = fn_t(tensor, **config)
out_pil = fn_pil(pil_img, **config)
out_scripted = script_fn(tensor, **config)
assert out_fn_t.dtype == out_scripted.dtype
assert out_fn_t.size()[1:] == out_pil.size[::-1]
rbg_tensor = out_fn_t
if out_fn_t.dtype != torch.uint8:
rbg_tensor = F.convert_image_dtype(out_fn_t, torch.uint8)
# Check that max difference does not exceed 2 in [0, 255] range
# Exact matching is not possible due to incompatibility convert_image_dtype and PIL results
_assert_approx_equal_tensor_to_pil(rbg_tensor.float(), out_pil, tol=tol, agg_method=agg_method)
atol = 1e-6
if out_fn_t.dtype == torch.uint8 and "cuda" in torch.device(device).type:
atol = 1.0
assert out_fn_t.allclose(out_scripted, atol=atol)
# FIXME: fn will be scripted again in _test_fn_on_batch. We could avoid that.
_test_fn_on_batch(batch_tensors, fn, scripted_fn_atol=atol, **config)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"brightness_factor": f} for f in (0.1, 0.5, 1.0, 1.34, 2.5)])
@pytest.mark.parametrize("channels", [1, 3])
def test_adjust_brightness(device, dtype, config, channels):
check_functional_vs_PIL_vs_scripted(
F.adjust_brightness,
F_pil.adjust_brightness,
F_t.adjust_brightness,
config,
device,
dtype,
channels,
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("channels", [1, 3])
def test_invert(device, dtype, channels):
check_functional_vs_PIL_vs_scripted(
F.invert, F_pil.invert, F_t.invert, {}, device, dtype, channels, tol=1.0, agg_method="max"
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("config", [{"bits": bits} for bits in range(0, 8)])
@pytest.mark.parametrize("channels", [1, 3])
def test_posterize(device, config, channels):
check_functional_vs_PIL_vs_scripted(
F.posterize,
F_pil.posterize,
F_t.posterize,
config,
device,
dtype=None,
channels=channels,
tol=1.0,
agg_method="max",
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("config", [{"threshold": threshold} for threshold in [0, 64, 128, 192, 255]])
@pytest.mark.parametrize("channels", [1, 3])
def test_solarize1(device, config, channels):
check_functional_vs_PIL_vs_scripted(
F.solarize,
F_pil.solarize,
F_t.solarize,
config,
device,
dtype=None,
channels=channels,
tol=1.0,
agg_method="max",
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dtype", (torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"threshold": threshold} for threshold in [0.0, 0.25, 0.5, 0.75, 1.0]])
@pytest.mark.parametrize("channels", [1, 3])
def test_solarize2(device, dtype, config, channels):
check_functional_vs_PIL_vs_scripted(
F.solarize,
lambda img, threshold: F_pil.solarize(img, 255 * threshold),
F_t.solarize,
config,
device,
dtype,
channels,
tol=1.0,
agg_method="max",
)
@pytest.mark.parametrize(
("dtype", "threshold"),
[
*[
(dtype, threshold)
for dtype, threshold in itertools.product(
[torch.float32, torch.float16],
[0.0, 0.25, 0.5, 0.75, 1.0],
)
],
*[(torch.uint8, threshold) for threshold in [0, 64, 128, 192, 255]],
*[(torch.int64, threshold) for threshold in [0, 2**32, 2**63 - 1]],
],
)
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_solarize_threshold_within_bound(threshold, dtype, device):
make_img = torch.rand if dtype.is_floating_point else partial(torch.randint, 0, torch.iinfo(dtype).max)
img = make_img((3, 12, 23), dtype=dtype, device=device)
F_t.solarize(img, threshold)
@pytest.mark.parametrize(
("dtype", "threshold"),
[
(torch.float32, 1.5),
(torch.float16, 1.5),
(torch.uint8, 260),
(torch.int64, 2**64),
],
)
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_solarize_threshold_above_bound(threshold, dtype, device):
make_img = torch.rand if dtype.is_floating_point else partial(torch.randint, 0, torch.iinfo(dtype).max)
img = make_img((3, 12, 23), dtype=dtype, device=device)
with pytest.raises(TypeError, match="Threshold should be less than bound of img."):
F_t.solarize(img, threshold)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"sharpness_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]])
@pytest.mark.parametrize("channels", [1, 3])
def test_adjust_sharpness(device, dtype, config, channels):
check_functional_vs_PIL_vs_scripted(
F.adjust_sharpness,
F_pil.adjust_sharpness,
F_t.adjust_sharpness,
config,
device,
dtype,
channels,
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("channels", [1, 3])
def test_autocontrast(device, dtype, channels):
check_functional_vs_PIL_vs_scripted(
F.autocontrast, F_pil.autocontrast, F_t.autocontrast, {}, device, dtype, channels, tol=1.0, agg_method="max"
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("channels", [1, 3])
def test_autocontrast_equal_minmax(device, dtype, channels):
a = _create_data_batch(32, 32, num_samples=1, channels=channels, device=device)
a = a / 2.0 + 0.3
assert (F.autocontrast(a)[0] == F.autocontrast(a[0])).all()
a[0, 0] = 0.7
assert (F.autocontrast(a)[0] == F.autocontrast(a[0])).all()
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("channels", [1, 3])
def test_equalize(device, channels):
torch.use_deterministic_algorithms(False)
check_functional_vs_PIL_vs_scripted(
F.equalize,
F_pil.equalize,
F_t.equalize,
{},
device,
dtype=None,
channels=channels,
tol=1.0,
agg_method="max",
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"contrast_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]])
@pytest.mark.parametrize("channels", [1, 3])
def test_adjust_contrast(device, dtype, config, channels):
check_functional_vs_PIL_vs_scripted(
F.adjust_contrast, F_pil.adjust_contrast, F_t.adjust_contrast, config, device, dtype, channels
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"saturation_factor": f} for f in [0.5, 0.75, 1.0, 1.5, 2.0]])
@pytest.mark.parametrize("channels", [1, 3])
def test_adjust_saturation(device, dtype, config, channels):
check_functional_vs_PIL_vs_scripted(
F.adjust_saturation, F_pil.adjust_saturation, F_t.adjust_saturation, config, device, dtype, channels
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"hue_factor": f} for f in [-0.45, -0.25, 0.0, 0.25, 0.45]])
@pytest.mark.parametrize("channels", [1, 3])
def test_adjust_hue(device, dtype, config, channels):
check_functional_vs_PIL_vs_scripted(
F.adjust_hue, F_pil.adjust_hue, F_t.adjust_hue, config, device, dtype, channels, tol=16.1, agg_method="max"
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"gamma": g1, "gain": g2} for g1, g2 in zip([0.8, 1.0, 1.2], [0.7, 1.0, 1.3])])
@pytest.mark.parametrize("channels", [1, 3])
def test_adjust_gamma(device, dtype, config, channels):
check_functional_vs_PIL_vs_scripted(
F.adjust_gamma,
F_pil.adjust_gamma,
F_t.adjust_gamma,
config,
device,
dtype,
channels,
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize("pad", [2, [3], [0, 3], (3, 3), [4, 2, 4, 3]])
@pytest.mark.parametrize(
"config",
[
{"padding_mode": "constant", "fill": 0},
{"padding_mode": "constant", "fill": 10},
{"padding_mode": "constant", "fill": 20.2},
{"padding_mode": "edge"},
{"padding_mode": "reflect"},
{"padding_mode": "symmetric"},
],
)
def test_pad(device, dt, pad, config):
script_fn = torch.jit.script(F.pad)
tensor, pil_img = _create_data(7, 8, device=device)
batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
if dt == torch.float16 and device == "cpu":
# skip float16 on CPU case
return
if dt is not None:
# This is a trivial cast to float of uint8 data to test all cases
tensor = tensor.to(dt)
batch_tensors = batch_tensors.to(dt)
pad_tensor = F_t.pad(tensor, pad, **config)
pad_pil_img = F_pil.pad(pil_img, pad, **config)
pad_tensor_8b = pad_tensor
# we need to cast to uint8 to compare with PIL image
if pad_tensor_8b.dtype != torch.uint8:
pad_tensor_8b = pad_tensor_8b.to(torch.uint8)
_assert_equal_tensor_to_pil(pad_tensor_8b, pad_pil_img, msg=f"{pad}, {config}")
if isinstance(pad, int):
script_pad = [
pad,
]
else:
script_pad = pad
pad_tensor_script = script_fn(tensor, script_pad, **config)
assert_equal(pad_tensor, pad_tensor_script, msg=f"{pad}, {config}")
_test_fn_on_batch(batch_tensors, F.pad, padding=script_pad, **config)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("mode", [NEAREST, NEAREST_EXACT, BILINEAR, BICUBIC])
def test_resized_crop(device, mode):
# test values of F.resized_crop in several cases:
# 1) resize to the same size, crop to the same size => should be identity
tensor, _ = _create_data(26, 36, device=device)
out_tensor = F.resized_crop(
tensor, top=0, left=0, height=26, width=36, size=[26, 36], interpolation=mode, antialias=True
)
assert_equal(tensor, out_tensor, msg=f"{out_tensor[0, :5, :5]} vs {tensor[0, :5, :5]}")
# 2) resize by half and crop a TL corner
tensor, _ = _create_data(26, 36, device=device)
out_tensor = F.resized_crop(tensor, top=0, left=0, height=20, width=30, size=[10, 15], interpolation=NEAREST)
expected_out_tensor = tensor[:, :20:2, :30:2]
assert_equal(
expected_out_tensor,
out_tensor,
msg=f"{expected_out_tensor[0, :10, :10]} vs {out_tensor[0, :10, :10]}",
)
batch_tensors = _create_data_batch(26, 36, num_samples=4, device=device)
_test_fn_on_batch(
batch_tensors,
F.resized_crop,
top=1,
left=2,
height=20,
width=30,
size=[10, 15],
interpolation=NEAREST,
)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize(
"func, args",
[
(F_t.get_dimensions, ()),
(F_t.get_image_size, ()),
(F_t.get_image_num_channels, ()),
(F_t.vflip, ()),
(F_t.hflip, ()),
(F_t.crop, (1, 2, 4, 5)),
(F_t.adjust_brightness, (0.0,)),
(F_t.adjust_contrast, (1.0,)),
(F_t.adjust_hue, (-0.5,)),
(F_t.adjust_saturation, (2.0,)),
(F_t.pad, ([2], 2, "constant")),
(F_t.resize, ([10, 11],)),
(F_t.perspective, ([0.2])),
(F_t.gaussian_blur, ((2, 2), (0.7, 0.5))),
(F_t.invert, ()),
(F_t.posterize, (0,)),
(F_t.solarize, (0.3,)),
(F_t.adjust_sharpness, (0.3,)),
(F_t.autocontrast, ()),
(F_t.equalize, ()),
],
)
def test_assert_image_tensor(device, func, args):
shape = (100,)
tensor = torch.rand(*shape, dtype=torch.float, device=device)
with pytest.raises(Exception, match=r"Tensor is not a torch image."):
func(tensor, *args)
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_vflip(device):
script_vflip = torch.jit.script(F.vflip)
img_tensor, pil_img = _create_data(16, 18, device=device)
vflipped_img = F.vflip(img_tensor)
vflipped_pil_img = F.vflip(pil_img)
_assert_equal_tensor_to_pil(vflipped_img, vflipped_pil_img)
# scriptable function test
vflipped_img_script = script_vflip(img_tensor)
assert_equal(vflipped_img, vflipped_img_script)
batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
_test_fn_on_batch(batch_tensors, F.vflip)
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_hflip(device):
script_hflip = torch.jit.script(F.hflip)
img_tensor, pil_img = _create_data(16, 18, device=device)
hflipped_img = F.hflip(img_tensor)
hflipped_pil_img = F.hflip(pil_img)
_assert_equal_tensor_to_pil(hflipped_img, hflipped_pil_img)
# scriptable function test
hflipped_img_script = script_hflip(img_tensor)
assert_equal(hflipped_img, hflipped_img_script)
batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
_test_fn_on_batch(batch_tensors, F.hflip)
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize(
"top, left, height, width",
[
(1, 2, 4, 5), # crop inside top-left corner
(2, 12, 3, 4), # crop inside top-right corner
(8, 3, 5, 6), # crop inside bottom-left corner
(8, 11, 4, 3), # crop inside bottom-right corner