forked from WenmuZhou/EAST.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
168 lines (146 loc) · 7.25 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
import config
os.environ['CUDA_VISIBLE_DEVICES'] = config.gpu_id
import shutil
from torch import nn
from torch.utils.data import DataLoader
import torch.backends.cudnn as cudnn
from tensorboardX import SummaryWriter
from model.model import East
from model.loss import EastLoss
from dataset.data_utils import custom_dset, collate_fn
import config
from utils import *
from eval import eval
def train_epoch(model, optimizer, scheduler, train_loader, device, criterion, epoch, all_step, writer, logger):
model.train()
train_loss = 0.
start = time.time()
lr = scheduler.get_lr()[0]
for i, (img, score_map, geo_map, training_mask) in enumerate(train_loader):
cur_batch = img.size()[0]
img, score_map, geo_map, training_mask = img.to(device), score_map.to(device), geo_map.to(
device), training_mask.to(device)
f_score, f_geometry = model(img)
loss = criterion(score_map, f_score, geo_map, f_geometry, training_mask)
# backward
scheduler.step()
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss = loss.item()
train_loss += loss
cur_step = epoch * all_step + i
writer.add_scalar(tag='Train/loss', scalar_value=loss, global_step=cur_step)
writer.add_scalar(tag='Train/lr', scalar_value=lr, global_step=cur_step)
if i % config.display_interval == 0:
batch_time = time.time() - start
logger.info(
'[{}/{}], [{}/{}], step: {}, {:.3f} samples/sec, batch_loss: {:.4f} time:{:.4f}, lr:{}'.format(
epoch, config.epochs, i, all_step, cur_step, config.display_interval * cur_batch / batch_time,
loss, batch_time, lr))
start = time.time()
return train_loss / all_step, lr
def main():
if config.output_dir is None:
config.output_dir = 'output'
if config.restart_training:
shutil.rmtree(config.output_dir, ignore_errors=True)
if not os.path.exists(config.output_dir):
os.makedirs(config.output_dir)
logger = setup_logger(os.path.join(config.output_dir, 'train_log'))
torch.manual_seed(config.seed) # 为CPU设置随机种子
if config.gpu_id is not None and torch.cuda.is_available():
torch.backends.cudnn.benchmark = True
logger.info('train with gpu {} and pytorch {}'.format(config.gpu_id, torch.__version__))
device = torch.device("cuda:0")
torch.cuda.manual_seed(config.seed) # 为当前GPU设置随机种子
torch.cuda.manual_seed_all(config.seed) # 为所有GPU设置随机种子
else:
logger.info('train with cpu and pytorch {}'.format(torch.__version__))
device = torch.device("cpu")
writer = SummaryWriter(config.output_dir)
# Model
model = East()
if not config.pretrained and not config.restart_training:
init_weights(model, init_type=config.init_type)
num_gpus = torch.cuda.device_count()
if num_gpus > 1:
model = nn.DataParallel(model)
model = model.to(device)
train_data = custom_dset(config.trainroot)
train_loader = DataLoader(train_data, batch_size=config.train_batch_size_per_gpu * num_gpus,
shuffle=True, collate_fn=collate_fn, num_workers=config.workers)
criterion = EastLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=config.lr)
if config.checkpoint != '' and not config.restart_training:
start_epoch = load_checkpoint(config.checkpoint, model, logger, device)
start_epoch += 1
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, config.lr_decay_step, gamma=config.lr_gamma,
last_epoch=start_epoch)
else:
start_epoch = config.start_epoch
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, config.lr_decay_step, gamma=config.lr_gamma)
all_step = len(train_loader)
logger.info('train dataset has {} samples,{} in dataloader'.format(train_data.__len__(), all_step))
best_model = {'recall': 0, 'precision': 0, 'f1': 0, 'model': ''}
try:
for epoch in range(start_epoch, config.epochs):
start = time.time()
train_loss, lr = train_epoch(model, optimizer, scheduler, train_loader, device, criterion, epoch, all_step,
writer, logger)
logger.info('[{}/{}], train_loss: {:.4f}, time: {:.4f}, lr: {}'.format(
epoch, config.epochs, train_loss, time.time() - start, lr))
if epoch % 4 == 0 or train_loss < 0.005:
recall, precision, f1 = eval(model, os.path.join(config.output_dir, 'output'), config.testroot, device)
logger.info('test: recall: {:.6f}, precision: {:.6f}, f1: {:.6f}'.format(recall, precision, f1))
net_save_path = '{}/PSENet_{}_loss{:.6f}_r{:.6f}_p{:.6f}_f1{:.6f}.pth'.format(config.output_dir, epoch,
0.1,
recall,
precision,
f1)
save_checkpoint(net_save_path, model, optimizer, epoch, logger)
if f1 > best_model['f1']:
best_model['recall'] = recall
best_model['precision'] = precision
best_model['f1'] = f1
best_model['model'] = net_save_path
writer.add_scalar(tag='Test/recall', scalar_value=recall, global_step=epoch)
writer.add_scalar(tag='Test/precision', scalar_value=precision, global_step=epoch)
writer.add_scalar(tag='Test/f1', scalar_value=f1, global_step=epoch)
writer.close()
except KeyboardInterrupt:
save_checkpoint('{}/final.pth'.format(config.output_dir), model, optimizer, epoch, logger)
finally:
if best_model['model']:
shutil.copy(best_model['model'],
'{}/best_r{:.6f}_p{:.6f}_f1{:.6f}.pth'.format(config.output_dir, best_model['recall'],
best_model['precision'], best_model['f1']))
logger.info(best_model)
# for epoch in range(start_epoch, config.max_epochs):
#
# train(train_loader, model, criterion, scheduler, optimizer, epoch)
#
# if epoch % config.eval_iteration == 0:
#
# # create res_file and img_with_box
# output_txt_dir_path = predict(model, criterion, epoch)
#
# # Zip file
# submit_path = MyZip(output_txt_dir_path, epoch)
#
# # submit and compute Hmean
# hmean_ = compute_hmean(submit_path)
#
# if hmean_ > hmean:
# is_best = True
#
# state = {
# 'epoch' : epoch,
# 'state_dict' : model.state_dict(),
# 'optimizer' : optimizer.state_dict(),
# 'is_best' : is_best,
# }
# save_checkpoint(state, epoch)
if __name__ == "__main__":
main()