forked from TOPLLab/WARDuino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWARDuino.cpp
1102 lines (994 loc) · 41.4 KB
/
WARDuino.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "WARDuino.h"
#include <algorithm> // std::find
#include <cmath>
#include <cstring>
#include <utility>
#include "debug.h"
#include "instructions.h"
#include "mem.h"
#include "primitives.h"
#include "util.h"
#define UNDEF (uint32_t)(-1)
#define pushUInt32(m, arg) m->stack[++(m)->sp].value.uint32 = arg
char exception[512];
// UTIL
bool resolvesym(char *filename, char *symbol, uint8_t external_kind, void **val,
char **err) {
if (nullptr != filename && !strcmp(filename, "env")) {
switch (external_kind) {
case 0x00: // Function
{
return resolve_primitive(symbol, (Primitive *)val);
break;
}
case 0x01: // Table
{
*err = (char *)"Unsupported type of import: table (0x01)";
return false;
}
case 0x02: // Memory
{
return resolve_external_memory(symbol, (Memory **)val);
}
case 0x03: // Global
{
*err = (char *)"Unsupported type of import: global (0x03)";
return false;
}
default:
*err = (char *)"Unsupported type of import";
return false;
}
} else {
*err = (char *)"Imports are only supported from the module env";
return false;
}
}
// global exception message
// char exception[4096];
// Static definition of block_types
uint32_t block_type_results[4][1] = {{I32}, {I64}, {F32}, {F64}};
Type block_types[5];
void initTypes() {
block_types[0].form = BLOCK;
block_types[0].result_count = 0;
block_types[1].form = BLOCK;
block_types[1].result_count = 1;
block_types[1].results = block_type_results[0];
block_types[2].form = BLOCK;
block_types[2].result_count = 1;
block_types[2].results = block_type_results[1];
block_types[3].form = BLOCK;
block_types[3].result_count = 1;
block_types[3].results = block_type_results[2];
block_types[4].form = BLOCK;
block_types[4].result_count = 1;
block_types[4].results = block_type_results[3];
}
Type *get_block_type(uint8_t value_type) {
switch (value_type) {
case 0x40:
return &block_types[0];
case I32:
return &block_types[1];
case I64:
return &block_types[2];
case F32:
return &block_types[3];
case F64:
return &block_types[4];
default:
FATAL("invalid block_type value_type: %d\n", value_type);
return nullptr;
}
}
// TODO: calculate this while parsing types
uint64_t get_type_mask(Type *type) {
uint64_t mask = 0x80;
if (type->result_count == 1) {
mask |= 0x80 - type->results[0];
}
mask = mask << 4u;
for (uint32_t p = 0; p < type->param_count; p++) {
mask = mask << 4u;
mask |= 0x80 - type->params[p];
}
return mask;
}
void parse_table_type(Module *m, uint8_t **pos) {
m->table.elem_type = read_LEB(pos, 7);
ASSERT(m->table.elem_type == ANYFUNC, "Table elem_type 0x%x unsupported",
m->table.elem_type);
uint32_t flags = read_LEB_32(pos);
uint32_t tsize = read_LEB_32(pos); // Initial size
m->table.initial = tsize;
m->table.size = tsize;
// Limit maximum to 64K
if (flags & 0x1u) {
tsize = read_LEB_32(pos); // Max size
m->table.maximum = 0x10000 < tsize ? 0x10000 : tsize;
} else {
m->table.maximum = 0x10000;
}
debug(" table size: %d\n", tsize);
}
void parse_memory_type(Module *m, uint8_t **pos) {
uint32_t flags = read_LEB_32(pos);
uint32_t pages = read_LEB_32(pos); // Initial size
m->memory.initial = pages;
m->memory.pages = pages;
// Limit the maximum to 2GB
if (flags & 0x1u) {
pages = read_LEB_32(pos); // Max size
m->memory.maximum = (uint32_t)fmin(0x8000, pages);
} else {
m->memory.maximum = 0x8000;
}
}
void skip_immediates(uint8_t **pos) {
uint32_t count, opcode = **pos;
*pos = *pos + 1;
switch (opcode) {
// varuint1
case 0x3f ... 0x40: // current_memory, grow_memory
read_LEB(pos, 1);
break;
// varuint32, varint32
case 0x0c ... 0x0d: // br, br_if
case 0x10: // call
case 0x20 ... 0x24: // get/set_local, tee_local, get/set_global
case 0x41: // i32.const
read_LEB_32(pos);
break;
// varuint32 + varuint1
case 0x11: // call_indirect
// encoding: 0x11 x 0x00
read_LEB_32(pos); // read x
read_LEB(pos, 7); // 0x00 byte
break;
// varint64
case 0x42: // i64.const
read_LEB(pos, 64);
break;
// uint32
case 0x43: // f32.const
*pos += 4;
break;
// uint64
case 0x44: // f64.const
*pos += 8;
break;
// block_type
case 0x02 ... 0x04: // block, loop, if
read_LEB(pos, 7);
break;
// memory_immediate
case 0x28 ... 0x3e: // *.load*, *.store*
read_LEB_32(pos);
read_LEB_32(pos);
break;
// br_table
case 0x0e: // br_table
count = read_LEB_32(pos); // target count
for (uint32_t i = 0; i < count; i++) {
read_LEB_32(pos);
}
read_LEB_32(pos); // default target
break;
default: // no immediates
break;
}
}
void find_blocks(Module *m) {
Block *function;
Block *block;
Block *blockstack[BLOCKSTACK_SIZE];
int top = -1;
uint8_t opcode = 0x00;
dbg_info(" find_blocks: function_count: %d\n", m->function_count);
for (uint32_t f = m->import_count; f < m->function_count; f++) {
function = &m->functions[f];
debug(" fidx: 0x%x, start: 0x%p, end: 0x%p\n", f,
function->start_ptr, function->end_ptr);
uint8_t *pos = function->start_ptr;
while (pos <= function->end_ptr) {
opcode = *pos;
switch (opcode) { // NOLINT(hicpp-multiway-paths-covered)
case 0x02: // block
case 0x03: // loop
case 0x04: // if
block = (Block *)acalloc(1, sizeof(Block), "Block");
block->block_type = opcode;
block->type = get_block_type(*(pos + 1));
block->start_ptr = pos;
blockstack[++top] = block;
m->block_lookup[pos] = block;
break;
case 0x05: // else
ASSERT(blockstack[top]->block_type == 0x04,
"else not matched with if")
blockstack[top]->else_ptr = pos + 1;
break;
case 0x0b: // end
if (pos == function->end_ptr) {
break;
}
ASSERT(top >= 0, "blockstack underflow");
block = blockstack[top--];
block->end_ptr = pos;
if (block->block_type == 0x03) {
// loop: label after start
block->br_ptr = block->start_ptr + 2;
} else {
// block, if: label at end
block->br_ptr = pos;
}
debug(
" block start: 0x%p, end: 0x%p,"
" br_addr: 0x%p, else_addr: 0x%p\n",
block->start_ptr, block->end_ptr, block->br_ptr,
block->else_ptr);
break;
}
skip_immediates(&pos);
}
ASSERT(top == -1, "Function ended in middle of block\n")
ASSERT(opcode == 0x0b, "Function block did not end with 0xb\n")
}
}
// End Control Instructions
void run_init_expr(Module *m, uint8_t type, uint8_t **pc) {
// Run the init_expr
Block block;
block.block_type = 0x01;
block.type = get_block_type(type);
block.start_ptr = *pc;
m->pc_ptr = *pc;
push_block(m, &block, m->sp);
// WARNING: running code here to get initial value!
dbg_info(" running init_expr at 0x%p: %s\n", m->pc_ptr,
block_repr(&block));
interpret(m);
*pc = m->pc_ptr;
ASSERT(m->stack[m->sp].value_type == type,
"init_expr type mismatch 0x%x != 0x%x", m->stack[m->sp].value_type,
type);
}
//
// Public API
//
uint32_t WARDuino::get_export_fidx(Module *m, const char *name) {
// Find name function index
for (uint32_t f = 0; f < m->function_count; f++) {
char *fname = m->functions[f].export_name;
if (!fname) {
continue;
}
if (strncmp(name, fname, 1024) == 0) {
return f;
}
}
return static_cast<uint32_t>(-1);
}
Module *WARDuino::load_module(uint8_t *bytes, uint32_t byte_count,
Options options) {
debug("Loading module of size %d \n", byte_count);
uint8_t valueType;
uint32_t word;
Module *m;
// Allocate the module
m = (Module *)acalloc(1, sizeof(Module), "Module");
m->warduino = this;
m->options = options;
// Empty stacks
m->sp = -1;
m->fp = -1;
m->csp = -1;
m->bytes = bytes;
m->byte_count = byte_count;
// run constructor with already allocated memory
new (&m->block_lookup) std::map<uint8_t *, Block *>;
m->start_function = UNDEF;
// Check the module
uint8_t *pos = bytes;
word = read_uint32(&pos);
debug("Magic number is 0x%x\n", word);
ASSERT(word == WA_MAGIC, "Wrong module magic 0x%x\n", word);
word = read_uint32(&pos);
ASSERT(word == WA_VERSION, "Wrong module version 0x%x\n", word);
// Read the sections
uint8_t *bytes_end = bytes + byte_count;
while (pos < bytes_end) {
uint32_t id = read_LEB(&pos, 7);
uint32_t section_len = read_LEB_32(&pos);
uint8_t *start_pos = pos;
debug("Reading section %d at 0x%p, length %d\n", id, pos, section_len);
switch (id) {
case 0: {
dbg_warn("Parsing Custom(0) section (length: 0x%x)\n",
section_len);
uint8_t *end_pos = pos + section_len;
char *name = read_string(&pos, nullptr);
dbg_warn(" Section name '%s'\n", name);
if (strncmp(name, "dylink", 7) == 0) {
// https://github.com/WebAssembly/tool-conventions/blob/master/DynamicLinking.md
// TODO: make use of these
uint32_t memorysize = read_LEB_32(&pos);
uint32_t tablesize = read_LEB_32(&pos);
(void)memorysize;
(void)tablesize;
} else {
dbg_warn("Ignoring unknown custom section '%s'\n", name);
}
pos = end_pos;
break;
}
case 1:
dbg_warn("Parsing Type(1) section (length: 0x%x)\n",
section_len);
m->type_count = read_LEB_32(&pos);
m->types = (Type *)acalloc(m->type_count, sizeof(Type),
"Module->types");
for (uint32_t c = 0; c < m->type_count; c++) {
Type *type = &m->types[c];
type->form = read_LEB(&pos, 7);
ASSERT(type->form == FUNC,
"%u-th type def was not a function type", c);
// read vector params
type->param_count = read_LEB_32(&pos);
type->params = (uint32_t *)acalloc(
type->param_count, sizeof(uint32_t), "type->params");
for (uint32_t p = 0; p < type->param_count; p++) {
type->params[p] = read_LEB_32(&pos);
}
// read vector results
type->result_count = read_LEB_32(&pos);
type->results = (uint32_t *)acalloc(
type->result_count, sizeof(uint32_t), "type->results");
for (uint32_t r = 0; r < type->result_count; r++) {
type->results[r] = read_LEB_32(&pos);
}
// TODO: calculate this above and remove get_type_mask
type->mask = get_type_mask(type);
debug(" form: 0x%x, params: %d, results: %d\n", type->form,
type->param_count, type->result_count);
}
break;
case 2: {
dbg_warn("Parsing Import(2) section (length: 0x%x)\n",
section_len);
uint32_t import_count = read_LEB_32(&pos);
for (uint32_t gidx = 0; gidx < import_count; gidx++) {
uint32_t module_len, field_len;
char *import_module = read_string(&pos, &module_len);
char *import_field = read_string(&pos, &field_len);
uint8_t external_kind = *(pos++); // read byte and move
debug(" import: %d/%d, external_kind: %d, %s.%s\n", gidx,
import_count, external_kind, import_module,
import_field);
uint32_t type_index = 0, fidx;
uint8_t content_type = 0, mutability;
switch (
external_kind) { // NOLINT(hicpp-multiway-paths-covered)
case 0x00: // Function
type_index = read_LEB_32(&pos);
break;
case 0x01: // Table
parse_table_type(m, &pos);
break;
case 0x02: // Memory
parse_memory_type(m, &pos);
break;
case 0x03: // Global
content_type = read_LEB(&pos, 7);
// TODO: use mutability
mutability = read_LEB(&pos, 1);
(void)mutability;
break;
}
void *val;
char *err,
*sym = (char *)malloc(module_len + field_len + 5);
// TODO add special case form primitives with resolvePrim
do {
// Try using module as handle filename
if (resolvesym(import_module, import_field,
external_kind, &val, &err)) {
break;
}
// Try concatenating module and field using underscores
// Also, replace '-' with '_'
sprintf(sym, "_%s__%s_", import_module, import_field);
int sidx = -1;
while (sym[++sidx]) {
if (sym[sidx] == '-') {
sym[sidx] = '_';
}
}
if (resolvesym(nullptr, sym, external_kind, &val,
&err)) {
break;
}
// If enabled, try without the leading underscore (added
// by emscripten for external symbols)
if (m->options.dlsym_trim_underscore &&
(strncmp("env", import_module, 4) == 0) &&
(strncmp("_", import_field, 1) == 0)) {
sprintf(sym, "%s", import_field + 1);
if (resolvesym(nullptr, sym, external_kind, &val,
&err)) {
break;
}
}
// Try the plain symbol by itself with module
// name/handle
sprintf(sym, "%s", import_field);
if (resolvesym(nullptr, sym, external_kind, &val,
&err)) {
break;
}
FATAL("Error: %s\n", err);
} while (false);
debug(" found '%s.%s' as symbol '%s' at address %p\n",
import_module, import_field, sym, val);
free(sym);
// Store in the right place
switch (external_kind) {
case 0x00: // Function
{
fidx = m->function_count;
m->import_count += 1;
m->function_count += 1;
m->functions = (Block *)arecalloc(
m->functions, fidx, m->import_count,
sizeof(Block), "Block(imports)");
Block *func = &m->functions[fidx];
func->import_module = import_module;
func->import_field = import_field;
func->type = &m->types[type_index];
debug(
" import: %s.%s, fidx: 0x%x, type_index: "
"0x%x\n",
func->import_module, func->import_field, fidx,
type_index);
func->func_ptr = (void (*)())val;
break;
}
case 0x01: // Table
{
ASSERT(!m->table.entries,
"More than 1 table not supported\n");
Table *tval = (Table *)val;
m->table.entries = (uint32_t *)val;
ASSERT(m->table.initial <= tval->maximum,
"Imported table is not large enough\n");
dbg_warn(" setting table.entries to: %p\n",
*(uint32_t **)val);
m->table.entries = *(uint32_t **)val;
m->table.size = tval->size;
m->table.maximum = tval->maximum;
m->table.entries = tval->entries;
break;
}
case 0x02: // Memory
{
ASSERT(!m->memory.bytes,
"More than 1 memory not supported\n");
auto *mval = (Memory *)val;
ASSERT(m->memory.initial <= mval->maximum,
"Imported memory is not large enough\n");
dbg_warn(
" setting memory pages: %d, max: %d, bytes: "
"%p\n",
mval->pages, mval->maximum, mval->bytes);
m->memory.pages = mval->pages;
m->memory.maximum = mval->maximum;
m->memory.bytes = mval->bytes;
break;
}
case 0x03: // Global
{
m->global_count += 1;
m->globals = (StackValue *)arecalloc(
m->globals, m->global_count - 1,
m->global_count, sizeof(StackValue), "globals");
StackValue *glob = &m->globals[m->global_count - 1];
glob->value_type = content_type;
switch (
content_type) { // NOLINT(hicpp-multiway-paths-covered)
case I32:
memcpy(&glob->value.uint32, val, 4);
break;
case I64:
memcpy(&glob->value.uint64, val, 8);
break;
case F32:
memcpy(&glob->value.f32, val, 4);
break;
case F64:
memcpy(&glob->value.f64, val, 8);
break;
}
debug(
" setting global %d (content_type %d) to "
"%p: %s\n",
m->global_count - 1, content_type, val,
value_repr(glob));
break;
}
default:
FATAL("Import of kind %d not supported\n",
external_kind);
}
}
break;
}
case 3: {
dbg_warn("Parsing Function(3) section (length: 0x%x)\n",
section_len);
m->function_count += read_LEB_32(&pos);
debug(" import_count: %d, new count: %d\n", m->import_count,
m->function_count);
Block *functions;
functions = (Block *)acalloc(m->function_count, sizeof(Block),
"Block(function)");
if (m->import_count != 0) {
memcpy(functions, m->functions,
sizeof(Block) * m->import_count);
}
m->functions = functions;
for (uint32_t f = m->import_count; f < m->function_count; f++) {
uint32_t tidx = read_LEB_32(&pos);
m->functions[f].fidx = f;
m->functions[f].type = &m->types[tidx];
debug(" function fidx: 0x%x, tidx: 0x%x\n", f, tidx);
}
break;
}
case 4: {
dbg_warn("Parsing Table(4) section\n");
uint32_t table_count = read_LEB_32(&pos);
debug(" table count: 0x%x\n", table_count);
ASSERT(table_count == 1, "More than 1 table not supported");
// Allocate the table
// for (uint32_t c=0; c<table_count; c++) {
parse_table_type(m, &pos);
// If it's not imported then don't mangle it
m->options.mangle_table_index = false;
m->table.entries = (uint32_t *)acalloc(
m->table.size, sizeof(uint32_t), "Module->table.entries");
//}
break;
}
case 5: {
dbg_warn("Parsing Memory(5) section\n");
uint32_t memory_count = read_LEB_32(&pos);
debug(" memory count: 0x%x\n", memory_count);
ASSERT(memory_count == 1, "More than 1 memory not supported\n");
// Allocate memory
// for (uint32_t c=0; c<memory_count; c++) {
parse_memory_type(m, &pos);
m->memory.bytes = (uint8_t *)acalloc(
m->memory.pages * PAGE_SIZE, 1, // sizeof(uint32_t),
"Module->memory.bytes");
//}
break;
}
case 6: {
dbg_warn("Parsing Global(6) section\n");
uint32_t global_count = read_LEB_32(&pos);
for (uint32_t g = 0; g < global_count; g++) {
// Same allocation Import of global above
uint8_t type = read_LEB(&pos, 7);
// TODO: use mutability
uint8_t mutability = read_LEB(&pos, 1);
(void)mutability;
uint32_t gidx = m->global_count;
m->global_count += 1;
m->globals = (StackValue *)arecalloc(
m->globals, gidx, m->global_count, sizeof(StackValue),
"globals");
m->globals[gidx].value_type = type;
// Run the init_expr to get global value
run_init_expr(m, type, &pos);
m->globals[gidx] = m->stack[m->sp--];
}
pos = start_pos + section_len;
break;
}
case 7: {
dbg_warn("Parsing Export(7) section (length: 0x%x)\n",
section_len);
uint32_t export_count = read_LEB_32(&pos);
for (uint32_t e = 0; e < export_count; e++) {
char *name = read_string(&pos, nullptr);
uint32_t kind = *(pos++); // read and move pos
uint32_t index = read_LEB_32(&pos);
if (kind != 0x00) {
dbg_warn(
" ignoring non-function export '%s'"
" kind 0x%x index 0x%x\n",
name, kind, index);
continue;
}
m->functions[index].export_name = name;
debug(" export: %s (0x%x)\n", name, index);
}
break;
}
case 8:
/**
* If the module has a start node defined, the function it
* refers should be called by the loader after the instance is
* initialized, including its Memory and Table though Data and
* Element sections, and before the exported functions are
* callable. The start function must not take any arguments or
* return anything The function is identified by function index,
* can be an import, and can also be exported There can only be
* at most one start node per module
*/
dbg_warn("Parsing Start(8) section (length: 0x%x)\n",
section_len);
m->start_function = read_LEB_32(&pos);
break;
case 9: {
dbg_warn("Parsing Element(9) section (length: 0x%x)\n",
section_len);
uint32_t element_count = read_LEB_32(&pos);
for (uint32_t c = 0; c < element_count; c++) {
uint32_t index = read_LEB_32(&pos);
ASSERT(index == 0, "Only 1 default table in MVP");
// Run the init_expr to get offset
run_init_expr(m, I32, &pos);
uint32_t offset = m->stack[m->sp--].value.uint32;
if (m->options.mangle_table_index) {
// offset is the table address + the index (not sized
// for the pointer size) so get the actual (sized) index
debug(
" origin offset: 0x%x, table addr: 0x%x, new "
"offset: 0x%x\n",
offset, (uint32_t)((uint64_t)m->table.entries),
offset - (uint32_t)((uint64_t)m->table.entries));
// offset = offset -
// (uint32_t)((uint64_t)m->table.entries & 0xFFFFFFFF);
offset =
offset - (uint32_t)((uint64_t)m->table.entries);
}
uint32_t num_elem = read_LEB_32(&pos);
dbg_warn(" table.entries: %p, offset: 0x%x\n",
m->table.entries, offset);
if (!m->options.disable_memory_bounds) {
ASSERT(offset + num_elem <= m->table.size,
"table overflow %d+%d > %d\n", offset, num_elem,
m->table.size);
}
for (uint32_t n = 0; n < num_elem; n++) {
debug(
" write table entries %p, offset: 0x%x, n: 0x%x, "
"addr: %p\n",
m->table.entries, offset, n,
&m->table.entries[offset + n]);
m->table.entries[offset + n] = read_LEB_32(&pos);
}
}
pos = start_pos + section_len;
break;
// 9 and 11 are similar so keep them together, 10 is below 11
}
case 11: {
dbg_warn("Parsing Data(11) section (length: 0x%x)\n",
section_len);
uint32_t seg_count = read_LEB_32(&pos);
for (uint32_t s = 0; s < seg_count; s++) {
uint32_t midx = read_LEB_32(&pos);
ASSERT(midx == 0, "Only 1 default memory in MVP");
// Run the init_expr to get the offset
run_init_expr(m, I32, &pos);
uint32_t offset = m->stack[m->sp--].value.uint32;
// Copy the data to the memory offset
uint32_t size = read_LEB_32(&pos);
if (!m->options.disable_memory_bounds) {
ASSERT(offset + size <= m->memory.pages * PAGE_SIZE,
"memory overflow %d+%d > %d\n", offset, size,
(uint32_t)(m->memory.pages * PAGE_SIZE));
}
dbg_info(
" setting 0x%x bytes of memory at 0x%p + offset "
"0x%x\n",
size, m->memory.bytes, offset);
memcpy(m->memory.bytes + offset, pos, size);
pos += size;
}
break;
}
case 10: {
dbg_warn("Parsing Code(10) section (length: 0x%x)\n",
section_len);
uint32_t body_count = read_LEB_32(&pos);
for (uint32_t b = 0; b < body_count; b++) {
Block *function = &m->functions[m->import_count + b];
uint32_t body_size = read_LEB_32(&pos);
uint8_t *payload_start = pos;
uint8_t *save_pos;
uint32_t local_count = read_LEB_32(&pos);
uint32_t tidx, lidx, lecount;
// Local variable handling
// Get number of locals for alloc
save_pos = pos;
function->local_count = 0;
for (uint32_t l = 0; l < local_count; l++) {
lecount = read_LEB_32(&pos);
function->local_count += lecount;
tidx = read_LEB(&pos, 7);
(void)tidx; // TODO: use tidx?
}
if (function->local_count > 0) {
function->local_value_type = (uint8_t *)acalloc(
function->local_count, sizeof(uint8_t),
"function->local_value_type");
}
// Restore position and read the locals
pos = save_pos;
lidx = 0;
for (uint32_t l = 0; l < local_count; l++) {
lecount = read_LEB_32(&pos);
valueType = read_LEB(&pos, 7);
for (uint32_t i = 0; i < lecount; i++) {
function->local_value_type[lidx++] = valueType;
}
}
function->start_ptr = pos;
function->end_ptr = payload_start + body_size - 1;
function->br_ptr = function->end_ptr;
ASSERT(*(function->end_ptr) == 0x0b,
"Code section did not end with 0x0b\n");
pos = function->end_ptr + 1;
}
break;
}
default:
FATAL("Section %d unimplemented\n", id);
pos += section_len;
}
}
find_blocks(m);
if (m->start_function != UNDEF) {
uint32_t fidx = m->start_function;
bool result;
dbg_warn("Running start function 0x%x ('%s')\n", fidx,
m->functions[fidx].export_name);
dbg_dump_stack(m);
ASSERT(m->functions[fidx].type->result_count == 0,
"start function 0x%x must not have arguments!", fidx);
if (fidx < m->import_count) {
// THUNK thunk_out(m, fidx); // import/thunk call
} else {
setup_call(m, fidx); // regular function call
}
if (m->csp < 0) {
// start function was a direct external call
result = true;
} else {
// run the function setup by setup_call
result = interpret(m);
}
if (!result) {
FATAL("Exception: %s\n", exception);
}
}
this->modules.push_back(m);
return m;
}
void WARDuino::unload_module(Module *m) {
auto it = std::find(this->modules.begin(), this->modules.end(), m);
if (it != this->modules.end()) this->modules.erase(it);
if (m->types != nullptr) {
for (uint32_t i = 0; i < m->type_count; i++) {
free(m->types[i].params);
free(m->types[i].results);
}
free(m->types);
}
if (m->functions != nullptr) {
for (uint32_t i = 0; i < m->function_count; ++i) {
free(m->functions[i].export_name);
}
free(m->functions);
}
if (m->globals != nullptr) free(m->globals);
if (m->table.entries != nullptr) free(m->table.entries);
if (m->memory.bytes != nullptr) free(m->memory.bytes);
free(m);
}
WARDuino::WARDuino() {
install_primitives();
initTypes();
}
// if entry == NULL, attempt to invoke 'main' or '_main'
// Return value of false means exception occured
bool WARDuino::invoke(Module *m, uint32_t fidx) {
bool result;
m->sp = -1;
m->fp = -1;
m->csp = -1;
dbg_trace("Interpretation starts\n");
dbg_dump_stack(m);
setup_call(m, fidx);
dbg_trace("Call setup\n");
result = interpret(m);
dbg_trace("Interpretation ended\n");
dbg_dump_stack(m);
return result;
}
int WARDuino::run_module(Module *m) {
uint32_t fidx = this->get_export_fidx(m, "main");
if (fidx == UNDEF) fidx = this->get_export_fidx(m, "Main");
if (fidx == UNDEF) fidx = this->get_export_fidx(m, "_main");
if (fidx == UNDEF) fidx = this->get_export_fidx(m, "_Main");
ASSERT(fidx != UNDEF, "Main not found");
this->invoke(m, fidx);
return m->stack->value.uint32;
}
// Called when an interrupt comes in (not concurently the same function)
// parse numer per 2 chars (HEX) (stop if non-hex)
// Don't use print in interup handlers
void WARDuino::handleInterrupt(size_t len, uint8_t *buff) {
for (size_t i = 0; i < len; i++) {
bool success = true;
int r = -1 /*undef*/;
// TODO replace by real binary
switch (buff[i]) {
case '0' ... '9':
r = buff[i] - '0';
break;
case 'A' ... 'F':
r = buff[i] - 'A' + 10;
break;
default:
success = false;
}
if (!success) {
if (this->interruptEven) {
if (!this->interruptBuffer.empty()) {
// done, send to process
auto *data = (uint8_t *)acalloc(
sizeof(uint8_t), this->interruptBuffer.size(),
"interrupt buffer");
memcpy(data, this->interruptBuffer.data(),
this->interruptBuffer.size() * sizeof(uint8_t));
this->parsedInterrups.push_back(data);
this->interruptBuffer.clear();
}
} else {
this->interruptBuffer.clear();
this->interruptEven = true;
dbg_warn("Dropped interrupt: could not process");
}
} else { // good parse
if (!this->interruptEven) {
this->interruptLastChar =
(this->interruptLastChar << 4u) + (uint8_t)r;
this->interruptBuffer.push_back(this->interruptLastChar);
} else {
this->interruptLastChar = (uint8_t)r;
}
this->interruptEven = !this->interruptEven;
}
}
}
uint8_t *WARDuino::getInterrupt() {
if (!this->parsedInterrups.empty()) {
uint8_t *ret = this->parsedInterrups.front();
this->parsedInterrups.pop_front();
return ret;
} else {
return nullptr;
}
}
void WARDuino::addBreakpoint(uint8_t *loc) { this->breakpoints.insert(loc); }
void WARDuino::delBreakpoint(uint8_t *loc) { this->breakpoints.erase(loc); }
bool WARDuino::isBreakpoint(uint8_t *loc) {
return this->breakpoints.find(loc) != this->breakpoints.end();
}
// CallbackHandler class
// bool CallbackHandler::resolving_event = false;
std::unordered_map<std::string, std::vector<Callback> *>
*CallbackHandler::callbacks =
new std::unordered_map<std::string, std::vector<Callback> *>();
std::queue<Event> *CallbackHandler::events = new std::queue<Event>();
void CallbackHandler::add_callback(const Callback &c) {
auto item = callbacks->find(c.topic);
if (item == callbacks->end()) {
auto *list = new std::vector<Callback>();
list->push_back(c);
callbacks->emplace(c.topic, list);
} else {
item->second->push_back(c);
}
}