-
Notifications
You must be signed in to change notification settings - Fork 53
/
train_t2m_trans.py
191 lines (151 loc) · 7.61 KB
/
train_t2m_trans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import os
import torch
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from os.path import join as pjoin
from torch.distributions import Categorical
import json
import clip
import options.option_transformer as option_trans
import models.vqvae as vqvae
import utils.utils_model as utils_model
import utils.eval_trans as eval_trans
from dataset import dataset_TM_train
from dataset import dataset_TM_eval
from dataset import dataset_tokenize
import models.t2m_trans as trans
from options.get_eval_option import get_opt
from models.evaluator_wrapper import EvaluatorModelWrapper
import warnings
warnings.filterwarnings('ignore')
##### ---- Exp dirs ---- #####
args = option_trans.get_args_parser()
torch.manual_seed(args.seed)
args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}')
args.vq_dir= os.path.join("./dataset/KIT-ML" if args.dataname == 'kit' else "./dataset/HumanML3D", f'{args.vq_name}')
os.makedirs(args.out_dir, exist_ok = True)
os.makedirs(args.vq_dir, exist_ok = True)
##### ---- Logger ---- #####
logger = utils_model.get_logger(args.out_dir)
writer = SummaryWriter(args.out_dir)
logger.info(json.dumps(vars(args), indent=4, sort_keys=True))
##### ---- Dataloader ---- #####
train_loader_token = dataset_tokenize.DATALoader(args.dataname, 1, unit_length=2**args.down_t)
from utils.word_vectorizer import WordVectorizer
w_vectorizer = WordVectorizer('./glove', 'our_vab')
val_loader = dataset_TM_eval.DATALoader(args.dataname, False, 32, w_vectorizer)
dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' if args.dataname == 'kit' else 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
##### ---- Network ---- #####
clip_model, clip_preprocess = clip.load("ViT-B/32", device=torch.device('cuda'), jit=False) # Must set jit=False for training
clip.model.convert_weights(clip_model) # Actually this line is unnecessary since clip by default already on float16
clip_model.eval()
for p in clip_model.parameters():
p.requires_grad = False
net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers
args.nb_code,
args.code_dim,
args.output_emb_width,
args.down_t,
args.stride_t,
args.width,
args.depth,
args.dilation_growth_rate)
trans_encoder = trans.Text2Motion_Transformer(num_vq=args.nb_code,
embed_dim=args.embed_dim_gpt,
clip_dim=args.clip_dim,
block_size=args.block_size,
num_layers=args.num_layers,
n_head=args.n_head_gpt,
drop_out_rate=args.drop_out_rate,
fc_rate=args.ff_rate)
print ('loading checkpoint from {}'.format(args.resume_pth))
ckpt = torch.load(args.resume_pth, map_location='cpu')
net.load_state_dict(ckpt['net'], strict=True)
net.eval()
net.cuda()
if args.resume_trans is not None:
print ('loading transformer checkpoint from {}'.format(args.resume_trans))
ckpt = torch.load(args.resume_trans, map_location='cpu')
trans_encoder.load_state_dict(ckpt['trans'], strict=True)
trans_encoder.train()
trans_encoder.cuda()
##### ---- Optimizer & Scheduler ---- #####
optimizer = utils_model.initial_optim(args.decay_option, args.lr, args.weight_decay, trans_encoder, args.optimizer)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_scheduler, gamma=args.gamma)
##### ---- Optimization goals ---- #####
loss_ce = torch.nn.CrossEntropyLoss()
nb_iter, avg_loss_cls, avg_acc = 0, 0., 0.
right_num = 0
nb_sample_train = 0
##### ---- get code ---- #####
for batch in train_loader_token:
pose, name = batch
bs, seq = pose.shape[0], pose.shape[1]
pose = pose.cuda().float() # bs, nb_joints, joints_dim, seq_len
target = net.encode(pose)
target = target.cpu().numpy()
np.save(pjoin(args.vq_dir, name[0] +'.npy'), target)
train_loader = dataset_TM_train.DATALoader(args.dataname, args.batch_size, args.nb_code, args.vq_name, unit_length=2**args.down_t)
train_loader_iter = dataset_TM_train.cycle(train_loader)
##### ---- Training ---- #####
best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_transformer(args.out_dir, val_loader, net, trans_encoder, logger, writer, 0, best_fid=1000, best_iter=0, best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100, clip_model=clip_model, eval_wrapper=eval_wrapper)
while nb_iter <= args.total_iter:
batch = next(train_loader_iter)
clip_text, m_tokens, m_tokens_len = batch
m_tokens, m_tokens_len = m_tokens.cuda(), m_tokens_len.cuda()
bs = m_tokens.shape[0]
target = m_tokens # (bs, 26)
target = target.cuda()
text = clip.tokenize(clip_text, truncate=True).cuda()
feat_clip_text = clip_model.encode_text(text).float()
input_index = target[:,:-1]
if args.pkeep == -1:
proba = np.random.rand(1)[0]
mask = torch.bernoulli(proba * torch.ones(input_index.shape,
device=input_index.device))
else:
mask = torch.bernoulli(args.pkeep * torch.ones(input_index.shape,
device=input_index.device))
mask = mask.round().to(dtype=torch.int64)
r_indices = torch.randint_like(input_index, args.nb_code)
a_indices = mask*input_index+(1-mask)*r_indices
cls_pred = trans_encoder(a_indices, feat_clip_text)
cls_pred = cls_pred.contiguous()
loss_cls = 0.0
for i in range(bs):
# loss function (26), (26, 513)
loss_cls += loss_ce(cls_pred[i][:m_tokens_len[i] + 1], target[i][:m_tokens_len[i] + 1]) / bs
# Accuracy
probs = torch.softmax(cls_pred[i][:m_tokens_len[i] + 1], dim=-1)
if args.if_maxtest:
_, cls_pred_index = torch.max(probs, dim=-1)
else:
dist = Categorical(probs)
cls_pred_index = dist.sample()
right_num += (cls_pred_index.flatten(0) == target[i][:m_tokens_len[i] + 1].flatten(0)).sum().item()
## global loss
optimizer.zero_grad()
loss_cls.backward()
optimizer.step()
scheduler.step()
avg_loss_cls = avg_loss_cls + loss_cls.item()
nb_sample_train = nb_sample_train + (m_tokens_len + 1).sum().item()
nb_iter += 1
if nb_iter % args.print_iter == 0 :
avg_loss_cls = avg_loss_cls / args.print_iter
avg_acc = right_num * 100 / nb_sample_train
writer.add_scalar('./Loss/train', avg_loss_cls, nb_iter)
writer.add_scalar('./ACC/train', avg_acc, nb_iter)
msg = f"Train. Iter {nb_iter} : Loss. {avg_loss_cls:.5f}, ACC. {avg_acc:.4f}"
logger.info(msg)
avg_loss_cls = 0.
right_num = 0
nb_sample_train = 0
if nb_iter % args.eval_iter == 0:
best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_transformer(args.out_dir, val_loader, net, trans_encoder, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, clip_model=clip_model, eval_wrapper=eval_wrapper)
if nb_iter == args.total_iter:
msg_final = f"Train. Iter {best_iter} : FID. {best_fid:.5f}, Diversity. {best_div:.4f}, TOP1. {best_top1:.4f}, TOP2. {best_top2:.4f}, TOP3. {best_top3:.4f}"
logger.info(msg_final)
break