Skip to content

Maikuraky/OmegaFold

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

header

OmegaFold: High-resolution de novo Structure Prediction from Primary Sequence

This is a beta release for paper High-resolution de novo structure prediction from primary sequence, the weights and the final code will be released soon.

Setup

To prepare the environment to run OmegaFold,

pip install -r requirements.txt

should get you where you want. Even if this failed, since we use minimal 3rd party libraries, you can always just install PyTorch and biopython (and that's it!) yourself.

Running

There should be only one way to use the model:

python main.py INPUT_FILE.fasta OUTPUT_DIRECTORY

And voila!

The INPUT_FILE.fasta should be a normal fasta file with possibly many sequences.

However, since we have implemented sharded execution, it is possible to

  1. trade computation time for GRAM: by chainging --subbatch_size. The smaller this value is, the longer the execution can take, and the less memory is required, or,
  2. trade computation time for average prediction quality, by changing --num_cycle

For more information, run

python main.py --help

Output

We produce one pdb for each of the sequences in INPUT_FILE.fasta saved in the OUTPUT_DIRECTORY. We also put our confidence value the place of b_factors in pdb files.

Cite

If this is helpful to you, please consider citing the paper with

@article{OmegaFold,
	author = {Wu, Ruidong and Ding, Fan and Wang, Rui and Shen, Rui and 
       Zhang, Xiwen and Luo, Shitong and Su, Chenpeng and Wu, Zuofan and Xie, 
       Qi and Berger, Bonnie and Ma, Jianzhu and Peng, Jian},
	title = {High-resolution de novo structure prediction from primary sequence},
	elocation-id = {2022.07.21.500999},
	year = {2022},
	doi = {10.1101/2022.07.21.500999},
	publisher = {Cold Spring Harbor Laboratory},
	URL = {https://www.biorxiv.org/content/early/2022/07/22/2022.07.21.500999},
	eprint = {https://www.biorxiv.org/content/early/2022/07/22/2022.07.21.500999.full.pdf},
	journal = {bioRxiv}
}

Note

The weights of the model will be release soon, as well as some minor tweaks of the code to make it more efficient either in computation or in memory to make it as widely-available as possible.

Also some of the comments might be out-of-date as of now, and will be updated very soon

About

OmegaFold Release Code

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%