-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathK-fold.py
195 lines (165 loc) · 7.08 KB
/
K-fold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import csv
import torch
import model
import os
from torch.utils import data
from torch.optim.lr_scheduler import StepLR
import pandas as pd
from torchvision import transforms
from torch import nn
from torch.optim import Adam
from utils import datasets
from utils.setting import get_class_args
from utils.func import print, eval_func, normalize_age, L1_regular
import numpy as np
import random
from sklearn.model_selection import KFold
import time
def setup_seed(seed=3407):
random.seed(seed) # Python的随机性
os.environ['PYTHONHASHSEED'] = str(seed) # 设置Python哈希种子,为了禁止hash随机化,使得实验可复现
np.random.seed(seed) # numpy的随机性
torch.manual_seed(seed) # torch的CPU随机性,为CPU设置随机种子
torch.cuda.manual_seed(seed) # torch的GPU随机性,为当前GPU设置随机种子
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU. torch的GPU随机性,为所有GPU设置随机种子
torch.backends.cudnn.deterministic = True # 选择确定性算法
torch.backends.cudnn.benchmark = False # if benchmark=True, deterministic will be False
torch.backends.cudnn.enabled = False
def run_fold(args, train_set, val_set, k):
checkpoint_ori = torch.load(args.ori_ckpt_path)
checkpoint_canny = torch.load(args.canny_ckpt_path)
# classifer = model.classifer2(checkpoint_ori, checkpoint_canny)
classifer = model.classifer(checkpoint_ori, checkpoint_canny)
# print(f'Model:\n{classifer}')
print(f'number of training params: {sum(p.numel() for p in classifer.parameters() if p.requires_grad) / 1e6} M')
train_loader = data.DataLoader(
dataset=train_set,
batch_size=args.batch_size,
shuffle=True,
drop_last=False
)
val_loader = data.DataLoader(
dataset=val_set,
batch_size=args.batch_size,
shuffle=False,
drop_last=False
)
loss_func = nn.L1Loss(reduction="sum")
epochs = args.epochs
optimizer = Adam(classifer.parameters(), lr=args.lr, weight_decay=args.weight_decay)
print("Use step level LR & WD scheduler!")
scheduler = StepLR(optimizer, step_size=args.step_size, gamma=args.gamma)
print(f'Scheduler:\n{scheduler}')
classifer.cuda()
for epoch in range(epochs):
classifer.train()
total_loss = 0.
train_length = 0.
classifer.train()
start_time = time.time()
for idx, batch in enumerate(train_loader):
images = batch[0].cuda()
cannys = batch[1].cuda()
boneage = batch[2].cuda()
male = batch[3].cuda()
optimizer.zero_grad()
output = classifer(images, cannys, male)
output = torch.squeeze(output)
boneage = torch.squeeze(boneage)
assert output.shape == boneage.shape, "pred and output isn't the same shape"
loss = loss_func(output, boneage) + L1_regular(classifer, 1e-4)
loss.backward()
optimizer.step()
train_length += batch[0].shape[0]
total_loss += loss.item()
end_time = time.time()
print(f'epoch {epoch + 1}: training loss: {round(total_loss / train_length, 3)}, '
f'valid loss: {round(eval_func(classifer, val_loader), 3)}, '
f'lr:{optimizer.param_groups[0]["lr"]}'
f'cost time is {end_time - start_time}')
scheduler.step()
with torch.no_grad():
train_record = [['label', 'pred']]
train_record_path = os.path.join(args.save_path, f"train{k}.csv")
train_length = 0.
total_loss = 0.
classifer.eval()
for idx, patch in enumerate(train_loader):
train_length += patch[0].shape[0]
images = patch[0].cuda()
cannys = patch[1].cuda()
boneage = patch[2].cuda()
male = patch[3].cuda()
output = classifer(images, cannys, male)
output = torch.squeeze(output)
boneage = torch.squeeze(boneage)
for i in range(output.shape[0]):
train_record.append([boneage[i].item(), round(output[i].item(), 2)])
assert output.shape == boneage.shape, "pred and output isn't the same shape"
loss = loss_func(output, boneage)
total_loss += loss.item()
print(f"length :{train_length}")
print(f'{k} fold final training loss: {round(total_loss / train_length, 3)}')
with open(train_record_path, 'w', newline='') as csvfile:
writer_train = csv.writer(csvfile)
for row in train_record:
writer_train.writerow(row)
with torch.no_grad():
val_record = [['label', 'pred']]
val_record_path = os.path.join(args.save_path, f"val{k}.csv")
val_length = 0.
val_loss = 0.
classifer.eval()
for idx, patch in enumerate(val_loader):
val_length += patch[0].shape[0]
images = patch[0].cuda()
cannys = patch[1].cuda()
boneage = patch[2].cuda()
male = patch[3].cuda()
output = classifer(images, cannys, male)
output = torch.squeeze(output)
boneage = torch.squeeze(boneage)
for i in range(output.shape[0]):
val_record.append([boneage[i].item(), round(output[i].item(), 2)])
assert output.shape == boneage.shape, "pred and output isn't the same shape"
loss = loss_func(output, boneage)
val_loss += loss.item()
print(f"length :{val_length}")
print(f'{k} fold final val loss: {round(val_loss / val_length, 3)}')
with open(val_record_path, 'w', newline='') as csvfile:
writer = csv.writer(csvfile)
for row in val_record:
writer.writerow(row)
save_path = os.path.join(args.save_path, f"'CHECKPOINT_{k}Fold.pth'")
torch.save(classifer, save_path)
def main(args):
print(args)
setup_seed(args.seed)
print(f'Set manual random seed: {args.seed}')
df = pd.read_csv(args.csv_path)
df, boneage_mean, boneage_div = normalize_age(df)
train_ori_dir = args.ori_train_path
train_canny_dir = args.canny_train_path
train_trans = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.Grayscale(),
transforms.ToTensor(),
])
train_dataset = datasets.ClassDataset(df=df, ori_dir=train_ori_dir, canny_dir=train_canny_dir,
transform=train_trans)
print(f'Training dataset info:\n{train_dataset}')
data_len = train_dataset.__len__()
X = torch.randn(data_len, 2)
kf = KFold(n_splits=5, shuffle=True)
for fold, (train_idx, val_idx) in enumerate(kf.split(X=X)):
print(f"Fold {fold + 1}/5")
ori, canny, age, male = train_dataset[train_idx]
train_set = datasets.KfoldDataset(ori, canny, age, male)
print(train_set)
ori1, canny1, age1, male1 = train_dataset[val_idx]
val_set = datasets.KfoldDataset(ori1, canny1, age1, male1)
print(val_set)
run_fold(args, train_set, val_set, fold+1)
return None
opt = get_class_args()
main(opt)