-
Notifications
You must be signed in to change notification settings - Fork 33
/
sync.rs
1200 lines (1092 loc) · 36.7 KB
/
sync.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! **This module is experimental**
//!
//! This module provides threadsafe versions of FrozenMap and FrozenVec,
//! ideal for use as a cache.
//!
//! These lock internally, however locks only last as long as the method calls
//!
use stable_deref_trait::StableDeref;
use std::alloc::Layout;
use std::borrow::Borrow;
use std::cmp::Eq;
use std::collections::BTreeMap;
use std::collections::HashMap;
use std::fmt;
use std::hash::Hash;
use std::iter::{FromIterator, IntoIterator};
use std::ops::Index;
use std::ptr::NonNull;
use std::sync::atomic::AtomicBool;
use std::sync::atomic::AtomicPtr;
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering;
use std::sync::RwLock;
use std::sync::TryLockError;
/// Append-only threadsafe version of `std::collections::HashMap` where
/// insertion does not require mutable access
pub struct FrozenMap<K, V> {
map: RwLock<HashMap<K, V>>,
}
impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for FrozenMap<K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self.map.try_read() {
Ok(guard) => guard.fmt(f),
Err(TryLockError::Poisoned(err)) => {
f.debug_tuple("FrozenMap").field(&&**err.get_ref()).finish()
}
Err(TryLockError::WouldBlock) => {
struct LockedPlaceholder;
impl fmt::Debug for LockedPlaceholder {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("<locked>")
}
}
f.debug_tuple("FrozenMap")
.field(&LockedPlaceholder)
.finish()
}
}
}
}
impl<K, V> Default for FrozenMap<K, V> {
fn default() -> Self {
Self {
map: Default::default(),
}
}
}
impl<K, V> FrozenMap<K, V> {
pub fn new() -> Self {
Self::default()
}
}
impl<T> From<Vec<T>> for FrozenVec<T> {
fn from(vec: Vec<T>) -> Self {
Self {
vec: RwLock::new(vec),
}
}
}
impl<K: Eq + Hash, V: StableDeref> FrozenMap<K, V> {
// these should never return &K or &V
// these should never delete any entries
/// If the key exists in the map, returns a reference
/// to the corresponding value, otherwise inserts a
/// new entry in the map for that key and returns a
/// reference to the given value.
///
/// Existing values are never overwritten.
///
/// The key may be any borrowed form of the map's key type, but
/// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
/// the key type.
///
/// # Examples
///
/// ```
/// use elsa::sync::FrozenMap;
///
/// let map = FrozenMap::new();
/// assert_eq!(map.insert(1, Box::new("a")), &"a");
/// assert_eq!(map.insert(1, Box::new("b")), &"a");
/// ```
pub fn insert(&self, k: K, v: V) -> &V::Target {
let mut map = self.map.write().unwrap();
let ret = unsafe {
let inserted = &**map.entry(k).or_insert(v);
&*(inserted as *const _)
};
ret
}
/// If the key exists in the map, returns a reference to the corresponding
/// value, otherwise inserts a new entry in the map for that key and the
/// value returned by the creation function, and returns a reference to the
/// generated value.
///
/// Existing values are never overwritten.
///
/// The key may be any borrowed form of the map's key type, but [`Hash`] and
/// [`Eq`] on the borrowed form *must* match those for the key type.
///
/// **Note** that the write lock is held for the duration of this function’s
/// execution, even while the value creation function is executing (if
/// needed). This will block any concurrent `get` or `insert` calls.
///
/// # Examples
///
/// ```
/// use elsa::sync::FrozenMap;
///
/// let map = FrozenMap::new();
/// assert_eq!(map.insert_with(1, || Box::new("a")), &"a");
/// assert_eq!(map.insert_with(1, || unreachable!()), &"a");
/// ```
pub fn insert_with(&self, k: K, f: impl FnOnce() -> V) -> &V::Target {
let mut map = self.map.write().unwrap();
let ret = unsafe {
let inserted = &**map.entry(k).or_insert_with(f);
&*(inserted as *const _)
};
ret
}
/// If the key exists in the map, returns a reference to the corresponding
/// value, otherwise inserts a new entry in the map for that key and the
/// value returned by the creation function, and returns a reference to the
/// generated value.
///
/// Existing values are never overwritten.
///
/// The key may be any borrowed form of the map's key type, but [`Hash`] and
/// [`Eq`] on the borrowed form *must* match those for the key type.
///
/// **Note** that the write lock is held for the duration of this function’s
/// execution, even while the value creation function is executing (if
/// needed). This will block any concurrent `get` or `insert` calls.
///
/// # Examples
///
/// ```
/// use elsa::sync::FrozenMap;
///
/// let map = FrozenMap::new();
/// assert_eq!(map.insert_with_key(1, |_| Box::new("a")), &"a");
/// assert_eq!(map.insert_with_key(1, |_| unreachable!()), &"a");
/// ```
pub fn insert_with_key(&self, k: K, f: impl FnOnce(&K) -> V) -> &V::Target {
let mut map = self.map.write().unwrap();
let ret = unsafe {
let inserted = &**map.entry(k).or_insert_with_key(f);
&*(inserted as *const _)
};
ret
}
/// Returns a reference to the value corresponding to the key.
///
/// The key may be any borrowed form of the map's key type, but
/// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
/// the key type.
///
/// # Examples
///
/// ```
/// use elsa::sync::FrozenMap;
///
/// let map = FrozenMap::new();
/// map.insert(1, Box::new("a"));
/// assert_eq!(map.get(&1), Some(&"a"));
/// assert_eq!(map.get(&2), None);
/// ```
pub fn get<Q>(&self, k: &Q) -> Option<&V::Target>
where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
{
let map = self.map.read().unwrap();
let ret = unsafe { map.get(k).map(|x| &*(&**x as *const V::Target)) };
ret
}
/// Applies a function to the owner of the value corresponding to the key (if any).
///
/// The key may be any borrowed form of the map's key type, but
/// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
/// the key type.
///
/// # Examples
///
/// ```
/// use elsa::sync::FrozenMap;
///
/// let map = FrozenMap::new();
/// map.insert(1, Box::new("a"));
/// assert_eq!(map.map_get(&1, Clone::clone), Some(Box::new("a")));
/// assert_eq!(map.map_get(&2, Clone::clone), None);
/// ```
pub fn map_get<Q, T, F>(&self, k: &Q, f: F) -> Option<T>
where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
F: FnOnce(&V) -> T,
{
let map = self.map.read().unwrap();
let ret = map.get(k).map(f);
ret
}
}
impl<K, V> FrozenMap<K, V> {
/// Collects the contents of this map into a vector of tuples.
///
/// The order of the entries is as if iterating a [`HashMap`] (stochastic).
///
/// # Examples
///
/// ```
/// use elsa::sync::FrozenMap;
///
/// let map = FrozenMap::new();
/// map.insert(1, Box::new("a"));
/// map.insert(2, Box::new("b"));
/// let mut tuple_vec = map.into_tuple_vec();
/// tuple_vec.sort();
///
/// assert_eq!(tuple_vec, vec![(1, Box::new("a")), (2, Box::new("b"))]);
/// ```
pub fn into_tuple_vec(self) -> Vec<(K, V)> {
self.map
.into_inner()
.unwrap()
.into_iter()
.collect::<Vec<_>>()
}
/// # Examples
///
/// ```
/// use elsa::sync::FrozenMap;
///
/// let map = FrozenMap::new();
/// assert_eq!(map.len(), 0);
/// map.insert(1, Box::new("a"));
/// assert_eq!(map.len(), 1);
/// ```
pub fn len(&self) -> usize {
let map = self.map.read().unwrap();
map.len()
}
/// # Examples
///
/// ```
/// use elsa::sync::FrozenMap;
///
/// let map = FrozenMap::new();
/// assert_eq!(map.is_empty(), true);
/// map.insert(1, Box::new("a"));
/// assert_eq!(map.is_empty(), false);
/// ```
pub fn is_empty(&self) -> bool {
let map = self.map.read().unwrap();
map.is_empty()
}
// TODO add more
}
impl<K: Clone, V> FrozenMap<K, V> {
pub fn keys_cloned(&self) -> Vec<K> {
self.map.read().unwrap().keys().cloned().collect()
}
}
impl<K: Eq + Hash, V: Copy> FrozenMap<K, V> {
/// Returns a copy of the value corresponding to the key.
///
/// The key may be any borrowed form of the map's key type, but
/// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
/// the key type.
///
/// # Examples
///
/// ```
/// use elsa::sync::FrozenMap;
///
/// let map = FrozenMap::new();
/// map.get_copy_or_insert(1, 6);
/// assert_eq!(map.get_copy(&1), Some(6));
/// assert_eq!(map.get_copy(&2), None);
/// ```
pub fn get_copy<Q>(&self, k: &Q) -> Option<V>
where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
{
let map = self.map.read().unwrap();
map.get(k).cloned()
}
/// If the key exists in the map, returns a reference
/// to the corresponding value, otherwise inserts a
/// new entry in the map for that key and returns a
/// reference to the given value.
///
/// Existing values are never overwritten.
///
/// The key may be any borrowed form of the map's key type, but
/// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
/// the key type.
///
/// # Examples
///
/// ```
/// use elsa::sync::FrozenMap;
///
/// let map = FrozenMap::new();
/// assert_eq!(map.get_copy_or_insert(1, 6), 6);
/// assert_eq!(map.get_copy_or_insert(1, 12), 6);
/// ```
pub fn get_copy_or_insert(&self, k: K, v: V) -> V {
let mut map = self.map.write().unwrap();
// This is safe because `or_insert` does not overwrite existing values
let inserted = map.entry(k).or_insert(v);
*inserted
}
/// If the key exists in the map, returns a reference to the corresponding
/// value, otherwise inserts a new entry in the map for that key and the
/// value returned by the creation function, and returns a reference to the
/// generated value.
///
/// Existing values are never overwritten.
///
/// The key may be any borrowed form of the map's key type, but [`Hash`] and
/// [`Eq`] on the borrowed form *must* match those for the key type.
///
/// **Note** that the write lock is held for the duration of this function’s
/// execution, even while the value creation function is executing (if
/// needed). This will block any concurrent `get` or `insert` calls.
///
/// # Examples
///
/// ```
/// use elsa::sync::FrozenMap;
///
/// let map = FrozenMap::new();
/// assert_eq!(map.get_copy_or_insert_with(1, || 6), 6);
/// assert_eq!(map.get_copy_or_insert_with(1, || unreachable!()), 6);
/// ```
pub fn get_copy_or_insert_with(&self, k: K, f: impl FnOnce() -> V) -> V {
let mut map = self.map.write().unwrap();
// This is safe because `or_insert_with` does not overwrite existing values
let inserted = map.entry(k).or_insert_with(f);
*inserted
}
/// If the key exists in the map, returns a reference to the corresponding
/// value, otherwise inserts a new entry in the map for that key and the
/// value returned by the creation function, and returns a reference to the
/// generated value.
///
/// Existing values are never overwritten.
///
/// The key may be any borrowed form of the map's key type, but [`Hash`] and
/// [`Eq`] on the borrowed form *must* match those for the key type.
///
/// **Note** that the write lock is held for the duration of this function’s
/// execution, even while the value creation function is executing (if
/// needed). This will block any concurrent `get` or `insert` calls.
///
/// # Examples
///
/// ```
/// use elsa::sync::FrozenMap;
///
/// let map = FrozenMap::new();
/// assert_eq!(map.get_copy_or_insert_with_key(1, |_| 6), 6);
/// assert_eq!(map.get_copy_or_insert_with_key(1, |_| unreachable!()), 6);
/// ```
pub fn get_copy_or_insert_with_key(&self, k: K, f: impl FnOnce(&K) -> V) -> V {
let mut map = self.map.write().unwrap();
// This is safe because `or_insert_with_key` does not overwrite existing values
let inserted = map.entry(k).or_insert_with_key(f);
*inserted
}
}
impl<K, V> std::convert::AsMut<HashMap<K, V>> for FrozenMap<K, V> {
/// Get mutable access to the underlying [`HashMap`].
///
/// This is safe, as it requires a `&mut self`, ensuring nothing is using
/// the 'frozen' contents.
fn as_mut(&mut self) -> &mut HashMap<K, V> {
self.map.get_mut().unwrap()
}
}
impl<K: Clone, V: Clone> Clone for FrozenMap<K, V> {
fn clone(&self) -> Self {
Self {
map: self.map.read().unwrap().clone().into(),
}
}
}
impl<K: Eq + Hash, V: PartialEq> PartialEq for FrozenMap<K, V> {
fn eq(&self, other: &Self) -> bool {
let self_ref: &HashMap<K, V> = &self.map.read().unwrap();
let other_ref: &HashMap<K, V> = &other.map.read().unwrap();
self_ref == other_ref
}
}
/// Append-only threadsafe version of `std::vec::Vec` where
/// insertion does not require mutable access
pub struct FrozenVec<T> {
vec: RwLock<Vec<T>>,
}
impl<T: fmt::Debug> fmt::Debug for FrozenVec<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self.vec.try_read() {
Ok(guard) => guard.fmt(f),
Err(TryLockError::Poisoned(err)) => {
f.debug_tuple("FrozenMap").field(&&**err.get_ref()).finish()
}
Err(TryLockError::WouldBlock) => {
struct LockedPlaceholder;
impl fmt::Debug for LockedPlaceholder {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("<locked>")
}
}
f.debug_tuple("FrozenMap")
.field(&LockedPlaceholder)
.finish()
}
}
}
}
impl<T> FrozenVec<T> {
/// Returns the number of elements in the vector.
pub fn len(&self) -> usize {
let vec = self.vec.read().unwrap();
vec.len()
}
/// Returns `true` if the vector contains no elements.
pub fn is_empty(&self) -> bool {
self.len() == 0
}
}
impl<T: StableDeref> FrozenVec<T> {
pub fn new() -> Self {
Default::default()
}
// these should never return &T
// these should never delete any entries
pub fn push(&self, val: T) {
let mut vec = self.vec.write().unwrap();
vec.push(val);
}
/// Push, immediately getting a reference to the element
pub fn push_get(&self, val: T) -> &T::Target {
let mut vec = self.vec.write().unwrap();
vec.push(val);
unsafe { &*(&**vec.get_unchecked(vec.len() - 1) as *const T::Target) }
}
/// Push, immediately getting a an index of the element
///
/// Index can then be used with the `get` method
///
/// # Examples
///
/// ```
/// use elsa::sync::FrozenVec;
///
/// let map = FrozenVec::new();
/// let idx = map.push_get_index(String::from("a"));
/// assert_eq!(map.get(idx), Some("a"));
/// assert_eq!(idx, 0);
/// assert_eq!(map.push_get_index(String::from("b")), 1);
/// ```
pub fn push_get_index(&self, val: T) -> usize {
let mut vec = self.vec.write().unwrap();
let index = vec.len();
vec.push(val);
index
}
pub fn get(&self, index: usize) -> Option<&T::Target> {
let vec = self.vec.read().unwrap();
unsafe { vec.get(index).map(|x| &*(&**x as *const T::Target)) }
}
/// Returns an iterator over the vector.
pub fn iter(&self) -> Iter<'_, T> {
self.into_iter()
}
}
/// Iterator over FrozenVec, obtained via `.iter()`
///
/// It is safe to push to the vector during iteration
#[derive(Debug)]
pub struct Iter<'a, T> {
vec: &'a FrozenVec<T>,
idx: usize,
}
impl<'a, T: StableDeref> Iterator for Iter<'a, T> {
type Item = &'a T::Target;
fn next(&mut self) -> Option<&'a T::Target> {
if let Some(ret) = self.vec.get(self.idx) {
self.idx += 1;
Some(ret)
} else {
None
}
}
}
impl<'a, T: StableDeref> IntoIterator for &'a FrozenVec<T> {
type Item = &'a T::Target;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Iter<'a, T> {
Iter { vec: self, idx: 0 }
}
}
#[test]
fn test_iteration() {
let vec = vec!["a", "b", "c", "d"];
let frozen: FrozenVec<_> = vec.clone().into();
assert_eq!(vec, frozen.iter().collect::<Vec<_>>());
for (e1, e2) in vec.iter().zip(frozen.iter()) {
assert_eq!(*e1, e2);
}
assert_eq!(vec.len(), frozen.iter().count())
}
impl<T> FrozenVec<T> {
/// Returns the internal vector backing this structure
///
/// # Examples
///
/// ```
/// use elsa::sync::FrozenVec;
///
/// let map = FrozenVec::new();
/// map.push("a");
/// map.push("b");
/// let tuple_vec = map.into_vec();
///
/// assert_eq!(tuple_vec, vec!["a", "b"]);
/// ```
pub fn into_vec(self) -> Vec<T> {
self.vec.into_inner().unwrap()
}
// TODO add more
}
impl<T> std::convert::AsMut<Vec<T>> for FrozenVec<T> {
/// Get mutable access to the underlying vector.
///
/// This is safe, as it requires a `&mut self`, ensuring nothing is using
/// the 'frozen' contents.
fn as_mut(&mut self) -> &mut Vec<T> {
self.vec.get_mut().unwrap()
}
}
impl<T> Default for FrozenVec<T> {
fn default() -> Self {
Self {
vec: Default::default(),
}
}
}
impl<T: Clone> Clone for FrozenVec<T> {
fn clone(&self) -> Self {
Self {
vec: self.vec.read().unwrap().clone().into(),
}
}
}
impl<T: PartialEq> PartialEq for FrozenVec<T> {
fn eq(&self, other: &Self) -> bool {
let self_ref: &Vec<T> = &self.vec.read().unwrap();
let other_ref: &Vec<T> = &other.vec.read().unwrap();
self_ref == other_ref
}
}
// The context for these functions is that we want to have a
// series of exponentially increasing buffer sizes. We want
// to maximize the total size of the buffers (since this
// determines the maximum size of the container) whilst
// minimizing the number of buffers (since we pay an up-front
// cost in space proportional to the number of buffers)
// without increasing the buffer size too much each time as
// this determines how much space will be wasted on average
// in allocated buffers. Finally, we also want a sequence
// which will generate nice round numbers and is easy to
// work with.
/// we multiply the buffer size by 4 each time whilst sizing
/// the first buffer to 3, so the buffer sizes generated by
/// the function will be 3, 12, 48, 192, etc.
const fn buffer_size(idx: usize) -> usize {
3 << (idx * 2)
}
/// This computes the sum of the sizes of buffers prior to a
/// particular buffer index, aka `4^idx - 1`. The choice of
/// sequence means that the total buffer size will always be
/// a sequence of `1`s in binary, since it's a power of 2 minus one.
const fn prior_total_buffer_size(idx: usize) -> usize {
(1 << (idx * 2)) - 1
}
/// This determines which buffer contains the nth item
/// (assuming the items are arranged sequentially in the buffers).
/// Since the total buffer sizes are always sequences of 1s in binary,
/// we can just count the number of binary digits in `(i+1)` and
/// divide by `2` (rounding up).
/// (That's what the `(65 - (i + 1).leading_zeros()) >> 1` part does.)
/// We use 65 rather than `64` so that the division by `2` rounds
/// up instead of down. We divide by `2 (>> 1)` because we skip
/// every other power of `2` since we increase the buffer size by `4`
/// each time, and finally we subtract one because buffer indices are
/// zero-indexed.
const fn buffer_index(i: usize) -> usize {
(((usize::BITS + 1 - (i + 1).leading_zeros()) >> 1) - 1) as usize
}
const NUM_BUFFERS: usize = (usize::BITS >> 2) as usize;
/// Append-only threadsafe version of `std::vec::Vec` where
/// insertion does not require mutable access.
/// Does not lock for reading, only allows `Copy` types and
/// will spinlock on pushes without affecting reads.
/// Note that this data structure is `64` pointers large on
/// 64 bit systems,
/// in contrast to `Vec` which is `3` pointers large.
pub struct LockFreeFrozenVec<T: Copy> {
data: [AtomicPtr<T>; NUM_BUFFERS],
len: AtomicUsize,
locked: AtomicBool,
}
impl<T: Copy> Drop for LockFreeFrozenVec<T> {
fn drop(&mut self) {
// We need to drop the elements from all allocated buffers.
for i in 0..NUM_BUFFERS {
let layout = Self::layout(buffer_size(i));
unsafe {
let ptr = *self.data[i].get_mut();
if ptr.is_null() {
// After the first null pointer there will only be more
// null pointers.
break;
} else {
std::alloc::dealloc(ptr.cast(), layout);
}
}
}
}
}
impl<T: Copy> Default for LockFreeFrozenVec<T> {
/// Creates an empty `LockFreeFrozenVec` that does not allocate
/// any heap allocations until the first time data is pushed to it.
fn default() -> Self {
Self {
data: Self::null(),
len: AtomicUsize::new(0),
locked: AtomicBool::new(false),
}
}
}
impl<T: Copy> LockFreeFrozenVec<T> {
const fn null() -> [AtomicPtr<T>; NUM_BUFFERS] {
[const { AtomicPtr::new(std::ptr::null_mut()) }; NUM_BUFFERS]
}
pub fn new() -> Self {
Default::default()
}
/// Obtains a write lock that ensures other writing threads
/// wait for us to finish. Reading threads are unaffected and
/// can concurrently read while we push a new element.
fn lock<U>(&self, f: impl FnOnce() -> U) -> U {
while self.locked.swap(true, Ordering::Acquire) {
// Wheeeee spinlock
std::hint::spin_loop();
}
let ret = f();
self.locked.store(false, Ordering::Release);
ret
}
fn layout(cap: usize) -> Layout {
Layout::array::<T>(cap).unwrap()
}
// these should never return &T
// these should never delete any entries
const NOT_ZST: () = if std::mem::size_of::<T>() == 0 {
panic!("`LockFreeFrozenVec` cannot be used with ZSTs");
};
/// Pushes an element to the vector, potentially allocating new memory.
/// Returns the index at which the element was inserted.
pub fn push(&self, val: T) -> usize {
// This statement actually does something: it evaluates a constant.
#[allow(path_statements)]
{
Self::NOT_ZST
}
self.lock(|| {
// These values must be consistent with the pointer we got.
let len = self.len();
let buffer_idx = buffer_index(len);
let mut ptr = self.data[buffer_idx].load(Ordering::Acquire);
if ptr.is_null() {
// Out of memory, allocate more
let layout = Self::layout(buffer_size(buffer_idx));
// SAFETY: `LockFreeFrozenVec` statically rejects zsts and the input `ptr` has always been
// allocated at the size stated in `cap`.
unsafe {
ptr = std::alloc::alloc(layout).cast::<T>();
}
assert!(!ptr.is_null());
self.data[buffer_idx].store(ptr, Ordering::Release);
}
let local_index = len - prior_total_buffer_size(buffer_idx);
unsafe {
ptr.add(local_index).write(val);
}
// This is written before updating the data pointer. Other `push` calls cannot observe this,
// because they are blocked on aquiring the data pointer before they ever read the `len`.
// `get` may read the length without synchronization, but that is fine,
// as there will be actually the right number of elements stored, or less elements,
// in which case you get a spurious `None`.
self.len.store(len + 1, Ordering::Release);
len
})
}
/// Load an element (if it exists). This operation is lock-free and
/// performs minimal synchronization.
pub fn get(&self, index: usize) -> Option<T> {
// The length can only grow, so just doing the length check
// independently of the read is fine. Worst case we
// read an old length value and end up returning `None` even if
// another thread already inserted the value.
if index >= self.len() {
return None;
}
let buffer_idx = buffer_index(index);
let buffer_ptr = self.data[buffer_idx].load(Ordering::Acquire);
let local_index = index - prior_total_buffer_size(buffer_idx);
Some(unsafe { *buffer_ptr.add(local_index) })
}
pub fn is_empty(&self) -> bool {
self.len() == 0
}
#[inline(always)]
pub fn len(&self) -> usize {
self.len.load(Ordering::Acquire)
}
/// Load an element (if it exists). This operation is lock-free and
/// performs no synchronized atomic operations. This is a useful primitive to
/// implement your own data structure with newtypes around the index.
///
/// ## Safety
///
/// `index` must be in bounds, i.e. it must be less than `self.len()`
#[inline]
pub unsafe fn get_unchecked(&self, index: usize) -> T {
let buffer_idx = buffer_index(index);
let buffer_ptr = self.data[buffer_idx].load(Ordering::Relaxed);
let local_index = index - prior_total_buffer_size(buffer_idx);
unsafe { *buffer_ptr.add(local_index) }
}
/// Run a function on each buffer in the vector.
///
/// ## Arguments
/// - `func`: a function that takes a slice to the buffer and the buffer index
///
fn for_each_buffer(&self, mut func: impl FnMut(&[T], usize)) {
// for each buffer, run the function
for buffer_index in 0..NUM_BUFFERS {
// get the buffer pointer
if let Some(buffer_ptr) = NonNull::new(self.data[buffer_index].load(Ordering::Acquire))
{
// get the buffer size and index
let buffer_size = buffer_size(buffer_index);
// create a slice from the buffer pointer and size
let buffer_slice =
unsafe { std::slice::from_raw_parts(buffer_ptr.as_ptr(), buffer_size) };
// run the function
func(buffer_slice, buffer_index);
} else {
// no data in this buffer, so we're done
break;
}
}
}
}
impl<T: Copy + PartialEq> PartialEq for LockFreeFrozenVec<T> {
fn eq(&self, other: &Self) -> bool {
// first check the length
let self_len = self.len();
let other_len = other.len();
if self_len != other_len {
return false;
}
// Since the lengths are the same, just check the elements in order
for index in 0..self_len {
// This is safe because the indices are in bounds (for `LockFreeFrozenVec` the bounds can only grow).
if self.get(index) != other.get(index) {
return false;
}
}
true
}
}
#[test]
fn test_non_lockfree_unchecked() {
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
struct Moo(i32);
let vec = LockFreeFrozenVec::new();
let idx_set = std::sync::Mutex::new(std::collections::HashSet::new());
std::thread::scope(|s| {
s.spawn(|| {
for i in 0..1000 {
idx_set.lock().unwrap().insert(vec.push(Moo(i)));
}
});
s.spawn(|| {
for i in 0..1000 {
idx_set.lock().unwrap().insert(vec.push(Moo(i)));
}
});
for _ in 0..2000 {
let idxes = std::mem::take(&mut *idx_set.lock().unwrap());
for idx in idxes {
unsafe {
vec.get_unchecked(idx);
}
}
}
});
// Test dropping empty vecs
LockFreeFrozenVec::<()>::new();
}
impl<T: Copy + Clone> Clone for LockFreeFrozenVec<T> {
fn clone(&self) -> Self {
let mut coppied_data = Self::null();
// for each buffer, copy the data
self.for_each_buffer(|buffer_slice, buffer_index| {
// allocate a new buffer
let layout = Self::layout(buffer_slice.len());
let new_buffer_ptr = unsafe { std::alloc::alloc(layout).cast::<T>() };
assert!(!new_buffer_ptr.is_null());
// copy the data to the new buffer
unsafe {
std::ptr::copy_nonoverlapping(
buffer_slice.as_ptr(),
new_buffer_ptr,
buffer_slice.len(),
);
};
// store the new buffer pointer
*coppied_data[buffer_index].get_mut() = new_buffer_ptr;
});
Self {
data: coppied_data,
// Since stores always use `Ordering::Release`, this call to `self.len()` (which uses `Ordering::Acquire`) reults
// in the operation overall being `Ordering::Relaxed`
len: AtomicUsize::new(self.len()),
locked: AtomicBool::new(false),
}
}
}
#[test]
fn test_non_lockfree() {
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
struct Moo(i32);
let vec = LockFreeFrozenVec::new();
assert_eq!(vec.get(1), None);
vec.push(Moo(1));
let i = vec.push(Moo(2));
vec.push(Moo(3));
assert_eq!(vec.get(i), Some(Moo(2)));
std::thread::scope(|s| {
s.spawn(|| {
for i in 0..1000 {
vec.push(Moo(i));
}
});
s.spawn(|| {
for i in 0..1000 {
vec.push(Moo(i));
}
});
for i in 0..2000 {
while vec.get(i).is_none() {}
}
});
// Test cloning
{
let vec2 = vec.clone();
assert_eq!(vec2.get(0), Some(Moo(1)));
assert_eq!(vec2.get(1), Some(Moo(2)));
assert_eq!(vec2.get(2), Some(Moo(3)));
}
// Test cloning a large vector
{
let large_vec = LockFreeFrozenVec::new();
for i in 0..1000 {
large_vec.push(Moo(i));
}
let large_vec_2 = large_vec.clone();
for i in 0..1000 {
assert_eq!(large_vec_2.get(i), Some(Moo(i as i32)));
}
}
// Test cloning an empty vector
{
let empty_vec = LockFreeFrozenVec::<()>::new();
let empty_vec_2 = empty_vec.clone();
assert_eq!(empty_vec_2.get(0), None);
}
// Test dropping empty vecs
LockFreeFrozenVec::<()>::new();
}