-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathacfk_DNNregressor.py
330 lines (193 loc) · 7.03 KB
/
acfk_DNNregressor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# -*- coding: utf-8 -*-
"""
Created on Thu Dec 22 15:03:04 2022
@author: asus
"""
# Load data
import pandas as pd
import numpy as np
import ast
import datetime
#Build the model
from tensorflow.keras.models import Sequential, model_from_json
from tensorflow.keras.layers import Dense, Dropout
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score
from scipy.stats import pearsonr
from keras.callbacks import EarlyStopping
# To plot the training and test loss curves:
import matplotlib.pyplot as plt
import seaborn as sns
import os
start_date = datetime.datetime.now()
#data = pd.read_csv('autorepressor_1000RNAsacfs_seed42_scale0.5_nlags5000_k1k2k3k4.csv',sep= " ")
data = pd.read_csv('nfkb_1000RNASacfs_seed42_scale0.5_nlags5000_allks.csv', sep=" ")
data.columns
#Here we have a multi-output regression model
ks = np.ascontiguousarray(data['k'])
lst_k = []
for k in ks:
lst_k.append(ast.literal_eval(k))
len(ks[0])
#Remove parameters that do not change.
"""
for i in np.arange(0,len(lst_k)):
lst_k[i].pop(0)
for i in np.arange(0,len(lst_k)):
lst_k[i].pop(0)
for i in np.arange(0,len(lst_k)):
lst_k[i].pop(4)
"""
ks = np.array(lst_k) #output variables
ks[0]
IIIks=[ks[i][2] for i in np.arange(0,len(ks))]
IIIks
IVks=[ks[i][3] for i in np.arange(0,len(ks))]
Vks=[ks[i][4] for i in np.arange(0,len(ks))]
VIks=[ks[i][5] for i in np.arange(0,len(ks))]
for i in np.arange(0,len(ks)):
ks[i][0] = 5
for i in np.arange(0,len(ks)):
ks[i][1] = 10
for i in np.arange(0,len(ks)):
ks[i][6] = 0
ks[0]
Iks = [ks[i][0] for i in np.arange(0,len(ks))]
plt.hist(IIIks)
plt.hist(IVks)
plt.hist(Vks)
plt.hist(VIks)
plt.hist(Iks)
acfs = np.ascontiguousarray(data['acfs'])
lst_acfs = []
for acf in acfs:
lst_acfs.append(ast.literal_eval(acf))
acfs = np.array(lst_acfs) #input variables
len(acfs[0])
end_date = datetime.datetime.now()
elapsed_time_date = end_date - start_date
print(" ")
print('Execution time:', elapsed_time_date, 'seconds')
print(np.shape(acfs))#(999, 5001), (200, 20001)
print(np.shape(ks)) #(999, 4), (198, 7)
start_date = datetime.datetime.now()
seed = 7
np.random.seed(seed)
X_train, X_test, y_train, y_test = train_test_split(acfs, ks, test_size=0.05, shuffle=True, random_state=seed)
dim1 = len(acfs[0])
"""
model = Sequential()
model.add(Dense(4000, input_dim=dim1, activation='relu'))#, kernel_initializer='he_uniform',
model.add(Dropout(0.25))
model.add(Dense(units=1000, activation='relu'))
model.add(Dropout(0.30))
model.add(Dense(units=250, activation='relu'))
model.add(Dropout(0.25))
model.add(Dense(units=50, activation='relu'))
#model.add(Dropout(0.30))
model.add(Dense(units=7, activation='relu'))#con linear o niente e k7=10^-31 torna al valore di -10^84
"""
model = Sequential()
model.add(Dense(1000, input_dim=dim1, activation='relu'))#, kernel_initializer='he_uniform',
model.add(Dropout(0.25))
model.add(Dense(units=250, activation='relu'))
model.add(Dropout(0.30))
model.add(Dense(units=50, activation='relu'))
#model.add(Dropout(0.25))
model.add(Dropout(0.30))
model.add(Dense(units=14, activation='relu'))#7
print(model.summary())
model.compile(loss='mae', optimizer='adam')
#Fit the model
history = model.fit(X_train, y_train, batch_size=128, validation_data=(X_test, y_test),verbose=2, epochs=50)
end_date = datetime.datetime.now()
elapsed_time_date = end_date - start_date
print(" ")
print('Execution time:', elapsed_time_date, 'seconds')
test_loss = model.evaluate(X_test, y_test)
prediction = model.predict(X_test)
print(r2_score(y_test,prediction))
r2score_test = r2_score(y_test,prediction)
#0.11228924302246548
#l'r2score aumenta mettendo l'activation function in ogni layer
r2score_test = r2_score(y_test,prediction,multioutput='variance_weighted')
r2score_test#0.17247737615920744
# One set of parameters
plt.plot(y_test[0],prediction[0], ".")
ident = [0.0, max(y_test[0])]
plt.plot(ident,ident)
# For all data
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(8,7))
for i in np.arange(0,len(y_test)):
ident = [0.0, 4]
ax.plot(ident,ident,color='grey')
ax.plot(y_test[i],prediction[i], ".")
ax.set_ylabel("True parameters")
ax.set_xlabel("Predicted parameters")
ax.set_title("Test data")
y_test = [np.round(item,2) for item in y_test]
prediction = [np.round(item,2) for item in prediction]
y_test[0]
prediction[0]
#Metti la funzione di attivazione ad ogni layer... forse puoi provare al cambiare il tipo.
prediction_train = model.predict(X_train)
print(r2_score(y_train, prediction_train))
#0.7937693970512397
y_train = [np.round(item,2) for item in y_train]
prediction = [np.round(item,2) for item in prediction_train]
y_train[0]
prediction[0]
ks[0]
r2score_train = r2_score(y_train, prediction_train,multioutput='variance_weighted')
r2score_train#0.7928748533596189
y_trainflat = y_train.flatten()
prediction_trainflat = prediction_train.flatten()
corr_train, _ = pearsonr(y_trainflat, prediction_trainflat)
corr_train#0.8987982424713679
y_testflat = y_test.flatten()
prediction_flat = prediction.flatten()
corr_test, _ = pearsonr(y_testflat, prediction_flat)
corr_test #0.503818344436295
# For 50 data points
prediction_train50 = model.predict(X_train[0:50])
print(r2_score(y_train[0:50], prediction_train50))
r2score_train50 = r2_score(y_train[0:50], prediction_train50)
# One set of parameters
plt.plot(y_train[0],prediction_train[0], ".")
ident = [0.0, max(y_train[0])]
plt.plot(ident,ident)
# For all data
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(8,7))
for i in np.arange(0,len(y_train)):
ident = [0.0, 8]
ax.plot(ident,ident, color='grey')
ax.plot(y_train[i],prediction_train[i], ".")
ax.set_ylabel("True parameters")
ax.set_xlabel("Predicted parameters")
ax.set_title("Train data")
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = np.arange(1, len(val_loss)+1)
epochs = epochs.tolist()
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(10, 5))
ax.plot(epochs, loss, "-", color="darkblue", label='Training loss')
ax.plot(epochs, val_loss, "-", color="cyan", label='Validation loss')
ax.legend()
sns.despine(fig, bottom=False, left=False)
plt.show()
# serialize model to JSON
model_json = model.to_json()
with open("firstmodel_1000RNASPROTEINSacfs_seed42_scale0.5_nlags5000_k1k2k3k4batchsize128.json","w") as json_file:
json_file.write(model_json)
# serialize model to HDF5
model.save_weights("firstmodel_1000RNASPROTEINSacfs_seed42_scale0.5_nlags5000_k1k2k3k4batchsize128.h5")
print("Saved model to disk")
#Save important information
columns = ['r2score_test','r2score_alltraindata','r2score_train','execution_time']
df_tot = pd.DataFrame(columns = columns)
actual_dir = os.getcwd()
file_path = r'{}\{}.csv'
df_tot.loc[0] = [r2score_test, r2score_train, r2score_train50, elapsed_time_date]
df_tot.to_csv(file_path.format(actual_dir,"INFOautorepressor_1000RNASacfs_seed42_scale0.1_nlags5000_k1k2k3k4"), sep =" ", index = None, header=True, mode = "w")
#r2score test data 0.19340419427451033
#r2score train data 0.6354416052776966