forked from takerum/vat_tf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_semisup.py
219 lines (186 loc) · 9.54 KB
/
train_semisup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import time
import numpy
import tensorflow as tf
import layers as L
import vat
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('device', '/gpu:0', "device")
tf.app.flags.DEFINE_string('dataset', 'cifar10', "{cifar10, svhn}")
tf.app.flags.DEFINE_string('log_dir', "", "log_dir")
tf.app.flags.DEFINE_integer('seed', 1, "initial random seed")
tf.app.flags.DEFINE_bool('validation', False, "")
tf.app.flags.DEFINE_integer('batch_size', 32, "the number of examples in a batch")
tf.app.flags.DEFINE_integer('ul_batch_size', 128, "the number of unlabeled examples in a batch")
tf.app.flags.DEFINE_integer('eval_batch_size', 100, "the number of eval examples in a batch")
tf.app.flags.DEFINE_integer('eval_freq', 5, "")
tf.app.flags.DEFINE_integer('num_epochs', 120, "the number of epochs for training")
tf.app.flags.DEFINE_integer('epoch_decay_start', 80, "epoch of starting learning rate decay")
tf.app.flags.DEFINE_integer('num_iter_per_epoch', 400, "the number of updates per epoch")
tf.app.flags.DEFINE_float('learning_rate', 0.001, "initial leanring rate")
tf.app.flags.DEFINE_float('mom1', 0.9, "initial momentum rate")
tf.app.flags.DEFINE_float('mom2', 0.5, "momentum rate after epoch_decay_start")
tf.app.flags.DEFINE_string('method', 'vat', "{vat, vatent, baseline}")
if FLAGS.dataset == 'cifar10':
from cifar10 import inputs, unlabeled_inputs
elif FLAGS.dataset == 'svhn':
from svhn import inputs, unlabeled_inputs
else:
raise NotImplementedError
NUM_EVAL_EXAMPLES = 5000
def build_training_graph(x, y, ul_x, lr, mom):
global_step = tf.get_variable(
name="global_step",
shape=[],
dtype=tf.float32,
initializer=tf.constant_initializer(0.0),
trainable=False,
)
logit = vat.forward(x)
nll_loss = L.ce_loss(logit, y)
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
if FLAGS.method == 'vat':
ul_logit = vat.forward(ul_x, is_training=True, update_batch_stats=False)
vat_loss = vat.virtual_adversarial_loss(ul_x, ul_logit)
additional_loss = vat_loss
elif FLAGS.method == 'vatent':
ul_logit = vat.forward(ul_x, is_training=True, update_batch_stats=False)
vat_loss = vat.virtual_adversarial_loss(ul_x, ul_logit)
ent_loss = L.entropy_y_x(ul_logit)
additional_loss = vat_loss + ent_loss
elif FLAGS.method == 'baseline':
additional_loss = 0
else:
raise NotImplementedError
loss = nll_loss + additional_loss
opt = tf.train.AdamOptimizer(learning_rate=lr, beta1=mom)
tvars = tf.trainable_variables()
grads_and_vars = opt.compute_gradients(loss, tvars)
train_op = opt.apply_gradients(grads_and_vars, global_step=global_step)
return loss, train_op, global_step
def build_eval_graph(x, y, ul_x):
losses = {}
logit = vat.forward(x, is_training=False, update_batch_stats=False)
nll_loss = L.ce_loss(logit, y)
losses['NLL'] = nll_loss
acc = L.accuracy(logit, y)
losses['Acc'] = acc
scope = tf.get_variable_scope()
scope.reuse_variables()
at_loss = vat.adversarial_loss(x, y, nll_loss, is_training=False)
losses['AT_loss'] = at_loss
ul_logit = vat.forward(ul_x, is_training=False, update_batch_stats=False)
vat_loss = vat.virtual_adversarial_loss(ul_x, ul_logit, is_training=False)
losses['VAT_loss'] = vat_loss
return losses
def main(_):
print(FLAGS.epsilon, FLAGS.top_bn)
numpy.random.seed(seed=FLAGS.seed)
tf.set_random_seed(numpy.random.randint(1234))
with tf.Graph().as_default() as g:
with tf.device("/cpu:0"):
images, labels = inputs(batch_size=FLAGS.batch_size,
train=True,
validation=FLAGS.validation,
shuffle=True)
ul_images = unlabeled_inputs(batch_size=FLAGS.ul_batch_size,
validation=FLAGS.validation,
shuffle=True)
images_eval_train, labels_eval_train = inputs(batch_size=FLAGS.eval_batch_size,
train=True,
validation=FLAGS.validation,
shuffle=True)
ul_images_eval_train = unlabeled_inputs(batch_size=FLAGS.eval_batch_size,
validation=FLAGS.validation,
shuffle=True)
images_eval_test, labels_eval_test = inputs(batch_size=FLAGS.eval_batch_size,
train=False,
validation=FLAGS.validation,
shuffle=True)
with tf.device(FLAGS.device):
lr = tf.placeholder(tf.float32, shape=[], name="learning_rate")
mom = tf.placeholder(tf.float32, shape=[], name="momentum")
with tf.variable_scope("CNN") as scope:
# Build training graph
loss, train_op, global_step = build_training_graph(images, labels, ul_images, lr, mom)
scope.reuse_variables()
# Build eval graph
losses_eval_train = build_eval_graph(images_eval_train, labels_eval_train, ul_images_eval_train)
losses_eval_test = build_eval_graph(images_eval_test, labels_eval_test, images_eval_test)
init_op = tf.global_variables_initializer()
if not FLAGS.log_dir:
logdir = None
writer_train = None
writer_test = None
else:
logdir = FLAGS.log_dir
writer_train = tf.summary.FileWriter(FLAGS.log_dir + "/train", g)
writer_test = tf.summary.FileWriter(FLAGS.log_dir + "/test", g)
saver = tf.train.Saver(tf.global_variables())
sv = tf.train.Supervisor(
is_chief=True,
logdir=logdir,
init_op=init_op,
init_feed_dict={lr: FLAGS.learning_rate, mom: FLAGS.mom1},
saver=saver,
global_step=global_step,
summary_op=None,
summary_writer=None,
save_model_secs=150, recovery_wait_secs=0)
print("Training...")
with sv.managed_session() as sess:
for ep in range(FLAGS.num_epochs):
if sv.should_stop():
break
if ep < FLAGS.epoch_decay_start:
feed_dict = {lr: FLAGS.learning_rate, mom: FLAGS.mom1}
else:
decayed_lr = ((FLAGS.num_epochs - ep) / float(
FLAGS.num_epochs - FLAGS.epoch_decay_start)) * FLAGS.learning_rate
feed_dict = {lr: decayed_lr, mom: FLAGS.mom2}
sum_loss = 0
start = time.time()
for i in range(FLAGS.num_iter_per_epoch):
_, batch_loss, _ = sess.run([train_op, loss, global_step],
feed_dict=feed_dict)
sum_loss += batch_loss
end = time.time()
print("Epoch:", ep, "CE_loss_train:", sum_loss / FLAGS.num_iter_per_epoch, "elapsed_time:", end - start)
if (ep + 1) % FLAGS.eval_freq == 0 or ep + 1 == FLAGS.num_epochs:
# Eval on training data
act_values_dict = {}
for key, _ in losses_eval_train.iteritems():
act_values_dict[key] = 0
n_iter_per_epoch = NUM_EVAL_EXAMPLES / FLAGS.eval_batch_size
for i in range(n_iter_per_epoch):
values = losses_eval_train.values()
act_values = sess.run(values)
for key, value in zip(act_values_dict.keys(), act_values):
act_values_dict[key] += value
summary = tf.Summary()
current_global_step = sess.run(global_step)
for key, value in act_values_dict.iteritems():
print("train-" + key, value / n_iter_per_epoch)
summary.value.add(tag=key, simple_value=value / n_iter_per_epoch)
if writer_train is not None:
writer_train.add_summary(summary, current_global_step)
# Eval on test data
act_values_dict = {}
for key, _ in losses_eval_test.iteritems():
act_values_dict[key] = 0
n_iter_per_epoch = NUM_EVAL_EXAMPLES / FLAGS.eval_batch_size
for i in range(n_iter_per_epoch):
values = losses_eval_test.values()
act_values = sess.run(values)
for key, value in zip(act_values_dict.keys(), act_values):
act_values_dict[key] += value
summary = tf.Summary()
current_global_step = sess.run(global_step)
for key, value in act_values_dict.iteritems():
print("test-" + key, value / n_iter_per_epoch)
summary.value.add(tag=key, simple_value=value / n_iter_per_epoch)
if writer_test is not None:
writer_test.add_summary(summary, current_global_step)
saver.save(sess, sv.save_path, global_step=global_step)
sv.stop()
if __name__ == "__main__":
tf.app.run()