diff --git a/Notebooks/Chap07/7_1_Backpropagation_in_Toy_Model.ipynb b/Notebooks/Chap07/7_1_Backpropagation_in_Toy_Model.ipynb index 728ab175..1dd8bb02 100644 --- a/Notebooks/Chap07/7_1_Backpropagation_in_Toy_Model.ipynb +++ b/Notebooks/Chap07/7_1_Backpropagation_in_Toy_Model.ipynb @@ -4,7 +4,7 @@ "metadata": { "colab": { "provenance": [], - "authorship_tag": "ABX9TyOwOpROPBel8eYGzp5DGRkt", + "authorship_tag": "ABX9TyP5wHK5E7/el+vxU947K3q8", "include_colab_link": true }, "kernelspec": { @@ -55,7 +55,7 @@ "This is a composition of the functions $\\cos[\\bullet],\\exp[\\bullet],\\sin[\\bullet]$. I chose these just because you probably already know the derivatives of these functions:\n", "\n", "\\begin{eqnarray*}\n", - " \\frac{\\partial \\cos[z]}{\\partial z} = -\\sin[z] \\quad\\quad \\frac{\\partial \\exp[z]}{\\partial z} = \\exp[z] \\quad\\quad \\frac{\\partial \\sin[z]}{\\partial z} = -\\cos[z].\n", + " \\frac{\\partial \\cos[z]}{\\partial z} = -\\sin[z] \\quad\\quad \\frac{\\partial \\exp[z]}{\\partial z} = \\exp[z] \\quad\\quad \\frac{\\partial \\sin[z]}{\\partial z} = \\cos[z].\n", "\\end{eqnarray*}\n", "\n", "Suppose that we have a least squares loss function:\n", @@ -107,8 +107,8 @@ " return beta3+omega3 * np.cos(beta2 + omega2 * np.exp(beta1 + omega1 * np.sin(beta0 + omega0 * x)))\n", "\n", "def likelihood(x, y, beta0, beta1, beta2, beta3, omega0, omega1, omega2, omega3):\n", - " diff = fn(x, beta0, beta1, beta2, beta3, omega0, omega1, omega2, omega3) - y ;\n", - " return diff * diff ;" + " diff = fn(x, beta0, beta1, beta2, beta3, omega0, omega1, omega2, omega3) - y\n", + " return diff * diff" ] }, { @@ -123,8 +123,8 @@ { "cell_type": "code", "source": [ - "beta0 = 1.0; beta1 = 2.0; beta2 = -3.0; beta3 = 0.4;\n", - "omega0 = 0.1; omega1 = -0.4; omega2 = 2.0; omega3 = 3.0;\n", + "beta0 = 1.0; beta1 = 2.0; beta2 = -3.0; beta3 = 0.4\n", + "omega0 = 0.1; omega1 = -0.4; omega2 = 2.0; omega3 = 3.0\n", "x = 2.3; y =2.0\n", "l_i_func = likelihood(x,y,beta0,beta1,beta2,beta3,omega0,omega1,omega2,omega3)\n", "print('l_i=%3.3f'%l_i_func)"