@@ -81,9 +81,7 @@ All your training image will be scaled into the same scale according to the conf
81
81
Use the script here to generate the tensorflow records file
82
82
83
83
```
84
- python data_provider/lanenet_data_feed_pipline.py
85
- --dataset_dir ./data/training_data_example
86
- --tfrecords_dir ./data/training_data_example/tfrecords
84
+ python tools/make_tusimple_tfrecords.py
87
85
```
88
86
89
87
#### Train model
@@ -95,18 +93,7 @@ script to load your own pretrained parameters or you can implement your own base
95
93
You may call the following script to train your own model
96
94
97
95
```
98
- python tools/train_lanenet.py
99
- --net vgg
100
- --dataset_dir ./data/training_data_example
101
- -m 0
102
- ```
103
- You can also continue the training process from the snapshot by
104
- ```
105
- python tools/train_lanenet.py
106
- --net vgg
107
- --dataset_dir data/training_data_example/
108
- --weights_path path/to/your/last/checkpoint
109
- -m 0
96
+ python tools/train_lanenet_tusimple.py
110
97
```
111
98
112
99
You may monitor the training process using tensorboard tools
@@ -171,6 +158,15 @@ script on your own.
171
158
172
159
New model weights can be found [ here] ( https://www.dropbox.com/sh/tnsf0lw6psszvy4/AAA81r53jpUI3wLsRW6TiPCya?dl=0 )
173
160
161
+ ## Recently updates 2020.06.12
162
+
163
+ Add real-time segmentation model BiseNetV2 as lanenet backbone. You may modify the
164
+ config/tusimple_lanenet.yaml config file to choose the front-end of lanenet model.
165
+
166
+ New lanenet model trainned based on BiseNetV2 can be found [ here] ( https://www.dropbox.com/sh/0b6r0ljqi76kyg9/AADedYWO3bnx4PhK1BmbJkJKa?dl=0 )
167
+
168
+ The new model can reach 78 fps in single image inference process.
169
+
174
170
## MNN Project
175
171
176
172
Add tools to convert lanenet tensorflow ckpt model into mnn model and deploy
0 commit comments