The Storage Performance Development Kit (SPDK) provides a set of tools and libraries for writing high performance, scalable, user-mode storage applications. It achieves high performance by moving all of the necessary drivers into userspace and operating in a polled mode instead of relying on interrupts, which avoids kernel context switches and eliminates interrupt handling overhead.
The development kit currently includes:
- NVMe driver
- I/OAT (DMA engine) driver
- NVMe over Fabrics target
- iSCSI target
- vhost target
- Virtio-SCSI driver
- Documentation
- Prerequisites
- Source Code
- Build
- Unit Tests
- Vagrant
- AWS
- Advanced Build Options
- Shared libraries
- Hugepages and Device Binding
- Example Code
- Contributing
Doxygen API documentation is available, as well as a Porting Guide for porting SPDK to different frameworks and operating systems.
git clone https://github.com/spdk/spdk
cd spdk
git submodule update --init
The dependencies can be installed automatically by scripts/pkgdep.sh
.
The scripts/pkgdep.sh
script will automatically install the bare minimum
dependencies required to build SPDK.
Use --help
to see information on installing dependencies for optional components
./scripts/pkgdep.sh
Linux:
./configure
make
FreeBSD: Note: Make sure you have the matching kernel source in /usr/src/ and also note that CONFIG_COVERAGE option is not available right now for FreeBSD builds.
./configure
gmake
./test/unit/unittest.sh
You will see several error messages when running the unit tests, but they are part of the test suite. The final message at the end of the script indicates success or failure.
A Vagrant setup is also provided to create a Linux VM with a virtual NVMe controller to get up and running quickly. Currently this has only been tested on MacOS and Ubuntu 16.04.2 LTS with the VirtualBox provider. The VirtualBox Extension Pack must also be installed in order to get the required NVMe support.
Details on the Vagrant setup can be found in the SPDK Vagrant documentation.
The following setup is known to work on AWS:
Image: Ubuntu 18.04
Before running setup.sh
, run modprobe vfio-pci
then: DRIVER_OVERRIDE=vfio-pci ./setup.sh
Optional components and other build-time configuration are controlled by
settings in the Makefile configuration file in the root of the repository. CONFIG
contains the base settings for the configure
script. This script generates a new
file, mk/config.mk
, that contains final build settings. For advanced configuration,
there are a number of additional options to configure
that may be used, or
mk/config.mk
can simply be created and edited by hand. A description of all
possible options is located in CONFIG
.
Boolean (on/off) options are configured with a 'y' (yes) or 'n' (no). For
example, this line of CONFIG
controls whether the optional RDMA (libibverbs)
support is enabled:
CONFIG_RDMA?=n
To enable RDMA, this line may be added to mk/config.mk
with a 'y' instead of
'n'. For the majority of options this can be done using the configure
script.
For example:
./configure --with-rdma
Additionally, CONFIG
options may also be overridden on the make
command
line:
make CONFIG_RDMA=y
Users may wish to use a version of DPDK different from the submodule included in the SPDK repository. Note, this includes the ability to build not only from DPDK sources, but also just with the includes and libraries installed via the dpdk and dpdk-devel packages. To specify an alternate DPDK installation, run configure with the --with-dpdk option. For example:
Linux:
./configure --with-dpdk=/path/to/dpdk/x86_64-native-linuxapp-gcc
make
FreeBSD:
./configure --with-dpdk=/path/to/dpdk/x86_64-native-bsdapp-clang
gmake
The options specified on the make
command line take precedence over the
values in mk/config.mk
. This can be useful if you, for example, generate
a mk/config.mk
using the configure
script and then have one or two
options (i.e. debug builds) that you wish to turn on and off frequently.
By default, the build of the SPDK yields static libraries against which
the SPDK applications and examples are linked.
Configure option --with-shared
provides the ability to produce SPDK shared
libraries, in addition to the default static ones. Use of this flag also
results in the SPDK executables linked to the shared versions of libraries.
SPDK shared libraries by default, are located in ./build/lib
. This includes
the single SPDK shared lib encompassing all of the SPDK static libs
(libspdk.so
) as well as individual SPDK shared libs corresponding to each
of the SPDK static ones.
In order to start a SPDK app linked with SPDK shared libraries, make sure to do the following steps:
- run ldconfig specifying the directory containing SPDK shared libraries
- provide proper
LD_LIBRARY_PATH
Linux:
./configure --with-shared
make
ldconfig -v -n ./build/lib
LD_LIBRARY_PATH=./build/lib/ ./app/spdk_tgt/spdk_tgt
Before running an SPDK application, some hugepages must be allocated and any NVMe and I/OAT devices must be unbound from the native kernel drivers. SPDK includes a script to automate this process on both Linux and FreeBSD. This script should be run as root.
sudo scripts/setup.sh
Users may wish to configure a specific memory size. Below is an example of configuring 8192MB memory.
sudo HUGEMEM=8192 scripts/setup.sh
Example code is located in the examples directory. The examples are compiled automatically as part of the build process. Simply call any of the examples with no arguments to see the help output. You'll likely need to run the examples as a privileged user (root) unless you've done additional configuration to grant your user permission to allocate huge pages and map devices through vfio.
For additional details on how to get more involved in the community, including contributing code and participating in discussions and other activities, please refer to spdk.io