-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
200 lines (155 loc) · 6.52 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import datetime
import logging
import logging.handlers
import os
import sys
import numpy as np
import requests
LOGDIR = "."
server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
moderation_msg = "I am sorry. Your input may violate our content moderation guidelines. Please avoid using harmful or offensive content."
handler = None
import torch.distributed as dist
try:
import av
from decord import VideoReader, cpu
except ImportError:
print("Please install pyav to use video processing functions.")
def process_video_with_decord(video_file, data_args):
vr = VideoReader(video_file, ctx=cpu(0), num_threads=1)
total_frame_num = len(vr)
video_time = total_frame_num / vr.get_avg_fps()
avg_fps = round(vr.get_avg_fps() / data_args.video_fps)
frame_idx = [i for i in range(0, total_frame_num, avg_fps)]
frame_time = [i/avg_fps for i in frame_idx]
if data_args.frames_upbound > 0:
if len(frame_idx) > data_args.frames_upbound or data_args.force_sample:
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, data_args.frames_upbound, dtype=int)
frame_idx = uniform_sampled_frames.tolist()
frame_time = [i/vr.get_avg_fps() for i in frame_idx]
video = vr.get_batch(frame_idx).asnumpy()
frame_time = ",".join([f"{i:.2f}s" for i in frame_time])
num_frames_to_sample = num_frames = len(frame_idx)
# https://github.com/dmlc/decord/issues/208
vr.seek(0)
return video, video_time, frame_time, num_frames_to_sample
def process_video_with_pyav(video_file, data_args):
container = av.open(video_file)
# !!! This is the only difference. Using auto threading
container.streams.video[0].thread_type = "AUTO"
video_frames = []
for packet in container.demux():
if packet.stream.type == 'video':
for frame in packet.decode():
video_frames.append(frame)
total_frame_num = len(video_frames)
video_time = video_frames[-1].time
avg_fps = round(total_frame_num / video_time / data_args.video_fps)
frame_idx = [i for i in range(0, total_frame_num, avg_fps)]
if data_args.frames_upbound > 0:
if len(frame_idx) > data_args.frames_upbound:
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, data_args.frames_upbound, dtype=int)
frame_idx = uniform_sampled_frames.tolist()
frames = [video_frames[i] for i in frame_idx]
return np.stack([x.to_ndarray(format="rgb24") for x in frames])
def rank0_print(*args):
if dist.is_initialized():
if dist.get_rank() == 0:
print(f"Rank {dist.get_rank()}: ", *args)
else:
print(*args)
def rank_print(*args):
if dist.is_initialized():
print(f"Rank {dist.get_rank()}: ", *args)
else:
print(*args)
def build_logger(logger_name, logger_filename):
global handler
formatter = logging.Formatter(
fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
# Set the format of root handlers
if not logging.getLogger().handlers:
logging.basicConfig(level=logging.INFO)
logging.getLogger().handlers[0].setFormatter(formatter)
# Redirect stdout and stderr to loggers
stdout_logger = logging.getLogger("stdout")
stdout_logger.setLevel(logging.INFO)
sl = StreamToLogger(stdout_logger, logging.INFO)
sys.stdout = sl
stderr_logger = logging.getLogger("stderr")
stderr_logger.setLevel(logging.ERROR)
sl = StreamToLogger(stderr_logger, logging.ERROR)
sys.stderr = sl
# Get logger
logger = logging.getLogger(logger_name)
logger.setLevel(logging.INFO)
# Add a file handler for all loggers
if handler is None:
os.makedirs(LOGDIR, exist_ok=True)
filename = os.path.join(LOGDIR, logger_filename)
handler = logging.handlers.TimedRotatingFileHandler(filename, when="D", utc=True)
handler.setFormatter(formatter)
for name, item in logging.root.manager.loggerDict.items():
if isinstance(item, logging.Logger):
item.addHandler(handler)
return logger
class StreamToLogger(object):
"""
Fake file-like stream object that redirects writes to a logger instance.
"""
def __init__(self, logger, log_level=logging.INFO):
self.terminal = sys.stdout
self.logger = logger
self.log_level = log_level
self.linebuf = ""
def __getattr__(self, attr):
return getattr(self.terminal, attr)
def write(self, buf):
temp_linebuf = self.linebuf + buf
self.linebuf = ""
for line in temp_linebuf.splitlines(True):
# From the io.TextIOWrapper docs:
# On output, if newline is None, any '\n' characters written
# are translated to the system default line separator.
# By default sys.stdout.write() expects '\n' newlines and then
# translates them so this is still cross platform.
if line[-1] == "\n":
self.logger.log(self.log_level, line.rstrip())
else:
self.linebuf += line
def flush(self):
if self.linebuf != "":
self.logger.log(self.log_level, self.linebuf.rstrip())
self.linebuf = ""
def disable_torch_init():
"""
Disable the redundant torch default initialization to accelerate model creation.
"""
import torch
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
def violates_moderation(text):
"""
Check whether the text violates OpenAI moderation API.
"""
url = "https://api.openai.com/v1/moderations"
headers = {"Content-Type": "application/json", "Authorization": "Bearer " + os.environ["OPENAI_API_KEY"]}
text = text.replace("\n", "")
data = "{" + '"input": ' + f'"{text}"' + "}"
data = data.encode("utf-8")
try:
ret = requests.post(url, headers=headers, data=data, timeout=5)
flagged = ret.json()["results"][0]["flagged"]
except requests.exceptions.RequestException as e:
print(f"######################### Moderation Error: {e} #########################")
flagged = False
except KeyError as e:
print(f"######################### Moderation Error: {e} #########################")
flagged = False
return flagged
def pretty_print_semaphore(semaphore):
if semaphore is None:
return "None"
return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})"