KunQuant is a optimizer, code generator and executor for financial expressions and factors, e.g. (close - open) /((high - low) + 0.001)
. The initial aim of it is to generate efficient implementation code for Alpha101 of WorldQuant and Alpha158 of Qlib. Some existing implementations of Alpha101 is straightforward but too simple. Hence we are developing KunQuant to provide optimizated code on a batch of general customized factors.
This project has mainly two parts: KunQuant
and KunRunner
. KunQuant is an optimizer & code generator written in Python. It takes a batch of financial expressions as the input and it generates highly optimized C++ code for computing these expressions. KunRunner is a supporting runtime library and Python wrapper to load and run the generated C++ code from KunQuant.
A typical workload of designing and running financial factors with KunQuant will be
- Write the factors with
KunQuant
Python library - Use
KunQuant
to optimize the factors and transform them into C++ source code - Use
cmake
to compile the generated code - Load the genereted binary via
KunRunner
in Python code
Experiments show that KunQuant-generated code can be more than 100x faster than naive implementation based on Pandas. We ran Alpha001~Alpha020 with Pandas-based code and our optimized code. See results below:
Pandas-based | KunQuant 1-core | KunQuant 4-cores |
---|---|---|
3.26s | 0.10s | 0.029s |
The data was collected on 4-core i7-7700HQ, running synthetic data of 64 stocks with 1000 rows of data.
- KunQuant parallelizes the computation for factors and uses SIMD (AVX2) to vectorize them.
- Redundant computation among factors are eliminated: Think what we can do with
sum(x)
,avg(x)
,stddev(x)
? The result ofsum(x)
is needed by all these factors. KunQuant also automatically finds if a internal result of a factor is used by other factors and try to reuse the results. - Temp buffers are minimized by operator-fusion. For a factor like
(a+b)/2
, pandas and numpy will first compute the result of(a+b)
and collect all the result in a buffer. Then,/2
opeator is applied on each element of the temp buffer of(a+b)
. This will result in large memory usage and bandwidth. KunQuant will generate C++ code to compute(a[i]+b[i])/2
in the same loop, to avoid the need to access and allocate temp memory.
- pybind11 (automatically cloned via git as a submodule)
- Python (3.7+ with f-string and dataclass support)
- cmake
- A working C++ compiler with C++11 support (e.g. clang, g++, msvc)
- x64 CPU with at least AVX2-FMA instruction set
Important node: Currently KunQuant only supports a multiple of 8 as the number of stocks as inputs. That is, you can only input 8, 16, 24, ..., etc. stocks in a batch.
This section serves as am example for compiling an existing factor library: Alpha101 and running it. Building and running your own factors will be similar. If you are only interested in how you can run Alpha101 factors, this section is all you need.
First, clone the KunQuant repo and make a new directory named build
:
git clone https://github.com/Menooker/KunQuant --recursive
cd KunQuant
mkdir build
cd build
Then run cmake to configure the build:
cmake ..
If you want to use a non-default binary of Python executable, instead of the above command, run
cmake .. -DPYTHON_EXECUTABLE="PATH/TO/PYTHON/EXECUTABLE"
Build the code with cmake:
cmake --build . -- -j4
If the build is successful, you should be able to see in the terminal:
...
[100%] Built target Alpha101
You can find KunRunner.cpython-??-{x86_64-linux-gnu.so,amd64.pyd}
and projects/Alpha101/{libAlpha101.so, Alpha101.dll}
in your build directory.
libAlpha101.so
or Alpha101.dll
is the compiled code for Alpha101 factors on Linux or Windows. KunRunner is a Cpp extension for Python with helps to load the generated factor libraries. It also contains some supportive functions for the loaded libraries.
Before running Python, set the environment variable of PYTHONPATH
:
On linux
export PYTHONPATH=$PYTHONPATH:/PATH/TO/KunQuant/build
On windows powershell
$env:PYTHONPATH+=";x:\PATH\TO\KunQuant\build\Release"
Note that /PATH/TO/KunQuant/build
or x:\PATH\TO\KunQuant\build
should be the directory containing KunRunner.cpython-...{pyd,so}
Then in Python, import KunRunner and load the Alpha101 library:
import KunRunner as kr
lib = kr.Library.load("./projects/libAlpha101.so")
modu = lib.getModule("alpha_101")
Note that you need to give KunRunner a relative or absolute path of the factor library.
Load your stock data. In this example, load from local pandas files. We assume the open, close, high, low, volumn and amount data for different stocks are stored in different files.
import pandas as pd
# we need a multiple of 8 number of stocks
watch_list = ["000002", "000063", ...]
num_stocks = len(watch_list)
assert(num_stocks % 8 == 0)
df = []
for stockid in watch_list:
d = pd.read_hdf(f"{stockid}.hdf5")
df.append(d)
print(df[0])
cols = df[0].columns.values
col2idx = dict(zip(cols, range(len(cols))))
print("columns to index", col2idx)
num_time = len(df[0])
print("dimension in time", num_time)
Here we printed the data frame of the first stock and the column-index mapping, it should look like:
open high low close volume amount
date
2020-01-02 32.799999 33.599998 32.509998 32.560001 101213040.0 3.342374e+09
2020-01-03 32.709999 32.810001 31.780001 32.049999 80553632.0 2.584310e+09
2020-01-06 31.750000 31.760000 31.250000 31.510000 87684056.0 2.761449e+09
... ... ... ... ... ... ...
2024-01-30 10.000000 10.050000 9.790000 9.790000 79792704.0 7.903654e+08
2024-01-31 9.770000 9.850000 9.560000 9.600000 67478864.0 6.527274e+08
2024-02-01 9.530000 9.660000 9.420000 9.440000 62786032.0 5.980486e+08
[993 rows x 6 columns]
columns to index {'open': 0, 'high': 1, 'low': 2, 'close': 3, 'volume': 4, 'amount': 5}
dimension in time 993
Transform your pandas data to numpy array of shape [features, stocks, time]
. Feature here means the columns for open, close, high, low, volumn and amount.
import numpy as np
# [features, stocks, time]
collected = np.empty((len(col2idx), num_stocks, len(df[0])), dtype="float32")
for stockidx, data in enumerate(df):
for colname, colidx in col2idx.items():
mat = data[colname].to_numpy()
collected[colidx, stockidx, :] = mat
Then an important step is to transpose the numpy array to shape [features, stocks//8, time, 8]
. We split the axis of stocks into two axis [stocks//8, 8]
. This step makes the memory layout of the numpy array match the SIMD length of AVX2, so that KunQuant can process the data in parallel in a single SIMD instruction.
# [features, stocks, time] => [features, stocks//8, 8, time] => [features, stocks//8, time, 8]
transposed = collected.reshape((collected.shape[0], -1, 8, collected.shape[2])).transpose((0, 1, 3, 2))
transposed = np.ascontiguousarray(transposed)
Now fill the input data in a dict
input_dict = dict()
for colname, colidx in col2idx.items():
input_dict[colname] = transposed[colidx]
Create an executor and compute the factors!
# using 4 threads
executor = kr.createMultiThreadExecutor(4)
out = kr.runGraph(executor, modu, input_dict, 0, num_time)
print("Result of alpha101", out["alpha001"])
print("Shape of alpha101", out["alpha001"].shape)
Each output factors are computed in an array of shape [time, stocks]
. The output of above code can be:
Result of alpha001 [[ nan nan nan ... nan nan nan]
[ nan nan nan ... nan nan nan]
[ nan nan nan ... nan nan nan]
...
[0.6875 0.1875 0.1875 ... 0.6875 0.6875 0.6875]
[0.6875 0.1875 0.1875 ... 0.6875 0.6875 0.6875]
[0.4375 1. 0.875 ... 0.4375 0.4375 0.4375]]
Shape of alpha001 (993, 8)
By default, runGraph will allocate an numpy array for each of the output factor. However, you can preallocate a numpy array and tell KunRunner to fill in this array instead of creating new ones.
outnames = modu.getOutputNames()
out_dict = dict()
# [Factors, Time, Stock]
sharedbuf = np.empty((len(outnames), num_time, num_stocks), dtype="float32")
for idx, name in enumerate(outnames):
out_dict[name] = sharedbuf[idx]
out = kr.runGraph(executor, modu, input_dict, 0, num_time, out_dict)
# results are in "out" and "sharedbuf"
Note that the executors are reusable. A multithread executor is actually a thread pool inside. If you want to run on multiple batches of data, you don’t need to create new executors for each batch.
KunQuant is a tool for general expressions. You can further read Customize.md for how you can compile your own customized factors.
Unit tests for some of the internal IR transformations:
python tests/test.py
python tests/test2.py
Unit tests for C++ runtime:
python tests/test_runtime.py
To run the runtime UTs, you need to make sure you have built the cmake target KunTest
by
cmake --build . --target KunTest
Correctness test of Alpha101
python tests/test_alpha101.py
The input data are randomly genereted data and the results are checked against a modified (corrected) version of Pandas-based code. Note that some of the factors like alpha013
are very sensitive to numerical changes in the intermeidate results, because rank
operators are used. The result may be very different after rank
even if the input is very close. Hence, the tolerance of these factors will be high to avoid false positives.
The implementation and testing code for Alpha101 is based on https://github.com/yli188/WorldQuant_alpha101_code
The implementation code for Alpha158 is based on https://github.com/microsoft/qlib/blob/main/qlib/contrib/data/handler.py