forked from StarlightSearch/EmbedAnything
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlib.rs
257 lines (236 loc) · 8.62 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
//! # Embed Anything
//! This library provides a simple interface to embed text and images using various embedding models.
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
pub mod embedding_model;
pub mod file_embed;
pub mod file_processor;
pub mod parser;
use std::path::PathBuf;
use embedding_model::embed::{EmbedData, EmbedImage, Embeder};
use file_embed::FileEmbeder;
use parser::FileParser;
use pyo3::{exceptions::PyValueError, prelude::*};
use rayon::prelude::*;
use tokio::runtime::Builder;
/// Embeds a list of queries using the specified embedding model.
///
/// # Arguments
///
/// * `query` - A vector of strings representing the queries to embed.
/// * `embeder` - A string specifying the embedding model to use. Valid options are "OpenAI", "Jina", "Clip", and "Bert".
///
/// # Returns
///
/// A vector of `EmbedData` objects representing the embeddings of the queries.
///
/// # Errors
///
/// Returns a `PyValueError` if an invalid embedding model is specified.
///
/// # Example
///
/// ```
/// use embed_anything::embed_query;
///
/// let query = vec!["Hello".to_string(), "World".to_string()];
/// let embeder = "OpenAI";
/// let embeddings = embed_query(query, embeder).unwrap();
/// println!("{:?}", embeddings);
/// ```
/// This will output the embeddings of the queries using the OpenAI embedding model.
#[pyfunction]
pub fn embed_query(query: Vec<String>, embeder: &str) -> PyResult<Vec<EmbedData>> {
let embedding_model = match embeder {
"OpenAI" => Embeder::OpenAI(embedding_model::openai::OpenAIEmbeder::default()),
"Jina" => Embeder::Jina(embedding_model::jina::JinaEmbeder::default()),
"Clip" => Embeder::Clip(embedding_model::clip::ClipEmbeder::default()),
"Bert" => Embeder::Bert(embedding_model::bert::BertEmbeder::default()),
_ => {
return Err(PyValueError::new_err(
"Invalid embedding model. Choose between OpenAI and AllMiniLmL12V2.",
))
}
};
let embeddings = embedding_model.embed(&query, None).unwrap();
Ok(embeddings)
}
/// Embeds the text from a file using the specified embedding model.
///
/// # Arguments
///
/// * `file_name` - A string specifying the name of the file to embed.
/// * `embeder` - A string specifying the embedding model to use. Valid options are "OpenAI", "Jina", "Clip", and "Bert".
///
/// # Returns
///
/// A vector of `EmbedData` objects representing the embeddings of the file.
///
/// # Errors
///
/// Returns a `PyValueError` if an invalid embedding model is specified.
///
/// # Example
///
/// ```rust
/// use embed_anything::embed_file;
///
/// let file_name = "test_files/test.pdf";
/// let embeder = "Bert";
/// let embeddings = embed_file(file_name, embeder).unwrap();
/// ```
/// This will output the embeddings of the file using the OpenAI embedding model.
#[pyfunction]
pub fn embed_file(file_name: &str, embeder: &str) -> PyResult<Vec<EmbedData>> {
let embeddings = match embeder {
"OpenAI" => emb_text(file_name, Embeder::OpenAI(embedding_model::openai::OpenAIEmbeder::default()))?,
"Jina" => emb_text(file_name, Embeder::Jina(embedding_model::jina::JinaEmbeder::default()))?,
"Bert" => emb_text(file_name, Embeder::Bert(embedding_model::bert::BertEmbeder::default()))?,
"Clip" => emb_image(file_name, embedding_model::clip::ClipEmbeder::default())?,
_ => {
return Err(PyValueError::new_err(
"Invalid embedding model. Choose between OpenAI and Bert for text files and Clip for image files.",
))
}
};
Ok(vec![embeddings])
}
/// Embeds the text from files in a directory using the specified embedding model.
///
/// # Arguments
///
/// * `directory` - A `PathBuf` representing the directory containing the files to embed.
/// * `embeder` - A string specifying the embedding model to use. Valid options are "OpenAI", "Jina", "Clip", and "Bert".
/// * `extensions` - An optional vector of strings representing the file extensions to consider for embedding. If `None`, all files in the directory will be considered.
///
/// # Returns
///
/// A vector of `EmbedData` objects representing the embeddings of the files.
///
/// # Errors
///
/// Returns a `PyValueError` if an invalid embedding model is specified.
///
/// # Example
///
/// ```rust
/// use embed_anything::embed_directory;
/// use std::path::PathBuf;
///
/// let directory = PathBuf::from("/path/to/directory");
/// let embeder = "OpenAI";
/// let extensions = Some(vec!["txt".to_string(), "pdf".to_string()]);
/// let embeddings = embed_directory(directory, embeder, extensions).unwrap();
/// ```
/// This will output the embeddings of the files in the specified directory using the OpenAI embedding model.
#[pyfunction]
pub fn embed_directory(
directory: PathBuf,
embeder: &str,
extensions: Option<Vec<String>>,
) -> PyResult<Vec<EmbedData>> {
let embeddings = match embeder {
"OpenAI" => emb_directory(
directory,
Embeder::OpenAI(embedding_model::openai::OpenAIEmbeder::default()),
extensions,
)
.unwrap(),
"Jina" => emb_directory(
directory,
Embeder::Jina(embedding_model::jina::JinaEmbeder::default()),
extensions,
)
.unwrap(),
"Bert" => emb_directory(
directory,
Embeder::Bert(embedding_model::bert::BertEmbeder::default()),
extensions,
)
.unwrap(),
"Clip" => emb_image_directory(directory, embedding_model::clip::ClipEmbeder::default())?,
_ => {
return Err(PyValueError::new_err(
"Invalid embedding model. Choose between OpenAI and Bert for text files and Clip for image files.",
))
}
};
Ok(embeddings)
}
#[pyfunction]
pub fn emb_webpage(url: String, embeder: &str) -> PyResult<Vec<EmbedData>> {
let website_processor = file_processor::website_processor::WebsiteProcesor::new();
let runtime = Builder::new_multi_thread().enable_all().build().unwrap();
let webpage = runtime
.block_on(website_processor.process_website(url.as_ref()))
.unwrap();
let embeddings = match embeder {
"OpenAI" => webpage.embed_webpage(&embedding_model::openai::OpenAIEmbeder::default())
.unwrap(),
"Jina" => webpage.embed_webpage(&embedding_model::jina::JinaEmbeder::default())
.unwrap(),
"Bert" => webpage.embed_webpage(&embedding_model::bert::BertEmbeder::default())
.unwrap(),
_ => {
return Err(PyValueError::new_err(
"Invalid embedding model. Choose between OpenAI and AllMiniLmL12V2.",
))
}
};
Ok(embeddings)
}
#[pymodule]
fn embed_anything(m: &Bound<'_, PyModule>) -> PyResult<()> {
m.add_function(wrap_pyfunction!(embed_file, m)?)?;
m.add_function(wrap_pyfunction!(embed_directory, m)?)?;
m.add_function(wrap_pyfunction!(embed_query, m)?)?;
m.add_function(wrap_pyfunction!(emb_webpage, m)?)?;
m.add_class::<embedding_model::embed::EmbedData>()?;
Ok(())
}
fn emb_directory(
directory: PathBuf,
embedding_model: Embeder,
extensions: Option<Vec<String>>,
) -> PyResult<Vec<EmbedData>> {
let mut file_parser = FileParser::new();
file_parser.get_text_files(&directory, extensions).unwrap();
let embeddings: Vec<EmbedData> = file_parser
.files
.par_iter()
.map(|file| {
let mut file_embeder = FileEmbeder::new(file.to_string());
let text = file_embeder.extract_text().unwrap();
file_embeder.split_into_chunks(&text, 100);
file_embeder.embed(&embedding_model, None).unwrap();
file_embeder.embeddings
})
.flatten()
.collect();
Ok(embeddings)
}
fn emb_text<T: AsRef<std::path::Path>>(file: T, embedding_model: Embeder) -> PyResult<EmbedData> {
let mut file_embeder = FileEmbeder::new(file.as_ref().to_str().unwrap().to_string());
let text = file_embeder.extract_text().unwrap();
file_embeder.split_into_chunks(&text, 100);
file_embeder.embed(&embedding_model, None).unwrap();
Ok(file_embeder.embeddings[0].clone())
}
fn emb_image<T: AsRef<std::path::Path>, U: EmbedImage>(
image_path: T,
embedding_model: U,
) -> PyResult<EmbedData> {
let embedding = embedding_model.embed_image(image_path, None).unwrap();
Ok(embedding)
}
fn emb_image_directory<T: EmbedImage>(
directory: PathBuf,
embedding_model: T,
) -> PyResult<Vec<EmbedData>> {
let mut file_parser = FileParser::new();
file_parser.get_image_paths(&directory).unwrap();
let embeddings = embedding_model
.embed_image_batch(&file_parser.files)
.unwrap();
Ok(embeddings)
}