forked from 920232796/bert_seq2seq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
粗粒度NER_CRF_train.py
343 lines (304 loc) · 11.8 KB
/
粗粒度NER_CRF_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
## 粗粒度ner加crf层的例子
import sys
sys.path.append("/Users/xingzhaohu/Downloads/code/python/ml/ml_code/bert/bert_seq2seq")
import torch
from tqdm import tqdm
import torch.nn as nn
from torch.optim import Adam
import unicodedata
import pandas as pd
import numpy as np
import os
import json
import time
import bert_seq2seq
from torch.utils.data import Dataset, DataLoader
from bert_seq2seq.tokenizer import Tokenizer, load_chinese_base_vocab
from bert_seq2seq.utils import load_bert
data_path = "./state_dict/corase_train_update.txt"
vocab_path = "./state_dict/roberta_wwm_vocab.txt" # roberta模型字典的位置
model_name = "roberta" # 选择模型名字
model_path = "./state_dict/roberta_wwm_pytorch_model.bin" # roberta模型位置
recent_model_path = "" # 用于把已经训练好的模型继续训练
model_save_path = "./bert_粗粒度ner_crf.bin"
batch_size = 4
lr = 1e-5
word2idx = load_chinese_base_vocab(vocab_path)
target = ["O", "B-LOC", "I-LOC", "B-PER", "I-PER", "B-ORG", "I-ORG"]
def _is_punctuation(ch):
"""标点符号类字符判断(全/半角均在此内)
"""
code = ord(ch)
return 33 <= code <= 47 or \
58 <= code <= 64 or \
91 <= code <= 96 or \
123 <= code <= 126 or \
unicodedata.category(ch).startswith('P')
def _cjk_punctuation():
return u'\uff02\uff03\uff04\uff05\uff06\uff07\uff08\uff09\uff0a\uff0b\uff0c\uff0d\uff0f\uff1a\uff1b\uff1c\uff1d\uff1e\uff20\uff3b\uff3c\uff3d\uff3e\uff3f\uff40\uff5b\uff5c\uff5d\uff5e\uff5f\uff60\uff62\uff63\uff64\u3000\u3001\u3003\u3008\u3009\u300a\u300b\u300c\u300d\u300e\u300f\u3010\u3011\u3014\u3015\u3016\u3017\u3018\u3019\u301a\u301b\u301c\u301d\u301e\u301f\u3030\u303e\u303f\u2013\u2014\u2018\u2019\u201b\u201c\u201d\u201e\u201f\u2026\u2027\ufe4f\ufe51\ufe54\xb7\uff01\uff1f\uff61\u3002'
def _is_cjk_character(ch):
"""CJK类字符判断(包括中文字符也在此列)
参考:https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
"""
code = ord(ch)
return 0x4E00 <= code <= 0x9FFF or \
0x3400 <= code <= 0x4DBF or \
0x20000 <= code <= 0x2A6DF or \
0x2A700 <= code <= 0x2B73F or \
0x2B740 <= code <= 0x2B81F or \
0x2B820 <= code <= 0x2CEAF or \
0xF900 <= code <= 0xFAFF or \
0x2F800 <= code <= 0x2FA1F
def _is_control(ch):
"""控制类字符判断
"""
return unicodedata.category(ch) in ('Cc', 'Cf')
def word_piece_tokenize(word):
"""word内分成subword
"""
if word in word2idx:
return [word]
tokens = []
start, stop = 0, 0
while start < len(word):
stop = len(word)
while stop > start:
sub = word[start:stop]
if start > 0:
sub = '##' + sub
if sub in word2idx:
break
stop -= 1
if start == stop:
stop += 1
tokens.append(sub)
start = stop
return tokens
def read_corpus(data_path):
"""
读原始数据
"""
sents_src = []
sents_tgt = []
with open(data_path) as f:
lines = f.readlines()
row = ""
t = []
for line in lines:
if line == "\n":
if len(row) < 300:
sents_src.append(row)
sents_tgt.append(t)
row = ""
t = []
continue
line = line.split(" ")
row = row + line[0]
t.append(line[1].strip("\n"))
return sents_src, sents_tgt
## 自定义dataset
class NERDataset(Dataset):
"""
针对特定数据集,定义一个相关的取数据的方式
"""
def __init__(self, sents_src, sents_tgt) :
## 一般init函数是加载所有数据
super(NERDataset, self).__init__()
# 读原始数据
# self.sents_src, self.sents_tgt = read_corpus(poem_corpus_dir)
self.sents_src = sents_src
self.sents_tgt = sents_tgt
self.idx2word = {k: v for v, k in word2idx.items()}
self.tokenizer = Tokenizer(word2idx)
def __getitem__(self, i):
## 得到单个数据
# print(i)
src = self.sents_src[i]
tgt = self.sents_tgt[i]
tgt = ["O"] + tgt + ["O"]
tgt = [target.index(i) for i in tgt ]
token_ids, token_type_ids = self.tokenizer.encode(src)
if len(token_ids) != len(tgt):
print("not equal")
os._exit(0)
output = {
"token_ids": token_ids,
"token_type_ids": token_type_ids,
"target_id": tgt
}
return output
def __len__(self):
return len(self.sents_src)
def collate_fn(batch):
"""
动态padding, batch为一部分sample
"""
def padding(indice, max_length, pad_idx=0):
"""
pad 函数
"""
pad_indice = [item + [pad_idx] * max(0, max_length - len(item)) for item in indice]
return torch.tensor(pad_indice)
token_ids = [data["token_ids"] for data in batch]
max_length = max([len(t) for t in token_ids])
token_type_ids = [data["token_type_ids"] for data in batch]
target_ids = [data["target_id"] for data in batch]
token_ids_padded = padding(token_ids, max_length)
token_type_ids_padded = padding(token_type_ids, max_length)
target_ids_padded = padding(target_ids, max_length)
return token_ids_padded, token_type_ids_padded, target_ids_padded
def viterbi_decode(nodes, trans):
"""
维特比算法 解码
nodes: (seq_len, target_size)
trans: (target_size, target_size)
"""
scores = nodes[0]
scores[1:] -= 100000 # 刚开始标签肯定是"O"
target_size = nodes.shape[1]
seq_len = nodes.shape[0]
labels = torch.arange(0, target_size).view(1, -1)
path = labels
for l in range(1, seq_len):
scores = scores.view(-1, 1)
M = scores + trans + nodes[l].view(1, -1)
scores, ids = M.max(0)
path = torch.cat((path[:, ids], labels), dim=0)
# print(scores)
# print(scores)
return path[:, scores.argmax()]
def ner_print(model, test_data, device="cpu"):
model.eval()
tokenier = Tokenizer(word2idx)
trans = model.state_dict()["crf_layer.trans"]
for text in test_data:
decode = []
text_encode, text_ids = tokenier.encode(text)
text_tensor = torch.tensor(text_encode, device=device).view(1, -1)
out = model(text_tensor).squeeze(0) # 其实是nodes
labels = viterbi_decode(out, trans)
starting = False
for l in labels:
if l > 0:
label = target[l.item()]
if label[0] == "B":
decode.append(label[2: ])
starting = True
elif starting:
decode.append(label[2: ])
else:
starting = False
decode.append("O")
else :
decode.append("O")
flag = 0
res = {}
for index, each_entity in enumerate(decode):
if each_entity != "O":
if flag != each_entity:
cur_text = text[index - 1]
if each_entity in res.keys():
res[each_entity].append(cur_text)
else :
res[each_entity] = [cur_text]
flag = each_entity
elif flag == each_entity:
res[each_entity][-1] += text[index - 1]
else :
flag = 0
print(res)
class Trainer:
def __init__(self):
# 加载数据
self.sents_src, self.sents_tgt = read_corpus(data_path)
self.tokenier = Tokenizer(word2idx)
# 判断是否有可用GPU
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("device: " + str(self.device))
# 定义模型
self.bert_model = load_bert(word2idx, model_name=model_name, model_class="sequence_labeling_crf", target_size=len(target))
## 加载预训练的模型参数~
self.bert_model.load_pretrain_params(model_path)
# 将模型发送到计算设备(GPU或CPU)
self.bert_model.set_device(self.device)
# 声明需要优化的参数
self.optim_parameters = list(self.bert_model.parameters())
self.optimizer = torch.optim.Adam(self.optim_parameters, lr=lr, weight_decay=1e-3)
# 声明自定义的数据加载器
dataset = NERDataset(self.sents_src, self.sents_tgt)
self.dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn)
def train(self, epoch):
# 一个epoch的训练
self.bert_model.train()
self.iteration(epoch, dataloader=self.dataloader, train=True)
def save(self, save_path):
"""
保存模型
"""
self.bert_model.save_all_params(save_path)
print("{} saved!".format(save_path))
def iteration(self, epoch, dataloader, train=True):
total_loss = 0
start_time = time.time() ## 得到当前时间
step = 0
for token_ids, token_type_ids, target_ids in tqdm(dataloader,position=0, leave=True):
# print(target_ids.shape)
step += 1
if step % 500 == 0:
test_data = ["日寇在京掠夺文物详情。", "以书结缘,把欧美,港台流行的食品类食谱汇集一堂。", "明天天津下雨,不知道主任还能不能来学校吃个饭。"]
ner_print(self.bert_model, test_data, device=self.device)
self.bert_model.train()
# 因为传入了target标签,因此会计算loss并且返回
predictions, loss = self.bert_model(token_ids,
labels=target_ids
)
# 反向传播
if train:
# 清空之前的梯度
self.optimizer.zero_grad()
# 反向传播, 获取新的梯度
loss.backward()
# 用获取的梯度更新模型参数
self.optimizer.step()
# 为计算当前epoch的平均loss
total_loss += loss.item()
end_time = time.time()
spend_time = end_time - start_time
# 打印训练信息
print("epoch is " + str(epoch)+". loss is " + str(total_loss) + ". spend time is "+ str(spend_time))
# 保存模型
self.save(model_save_path)
if __name__ == '__main__':
trainer = Trainer()
train_epoches = 25
for epoch in range(train_epoches):
# 训练一个epoch
trainer.train(epoch)
# with open("./state_dict/corase_train_update.txt", "a+") as f:
# with open("./corpus/粗粒度NER/人民日报ner数据.txt", "r", encoding="utf-8") as f1 :
# lines = f1.readlines()
# start = 1
# string = ""
# label = ""
# for line in lines:
# if line == "\n":
# f.write("\n")
# continue
# line = line.strip("\n")
# line = line.split(" ")
# if _is_punctuation(line[0]) or _is_cjk_character(line[0]):
# if string != "":
# string = string.lower()
# tokens = word_piece_tokenize(string) # 子词
# for t in tokens:
# if "##" in t:
# f.write(t[2:] + " " + label + "\n")
# else :
# f.write(t + " " + label + "\n")
# # f.write(string + " " + label + "\n")
# string = ""
# label = ""
# f.write(line[0] + " " + line[1] + "\n")
# else :
# string += line[0]
# label = line[1]