forked from 920232796/bert_seq2seq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
relationship_classify_train.py
204 lines (172 loc) · 7.08 KB
/
relationship_classify_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
## 关系分类的例子
import sys
sys.path.append("/Users/xingzhaohu/Downloads/code/python/ml/ml_code/bert/bert_seq2seq")
import torch
from tqdm import tqdm
import torch.nn as nn
from torch.optim import Adam
import pandas as pd
import numpy as np
import os
import json
import time
import bert_seq2seq
from torch.utils.data import Dataset, DataLoader
from bert_seq2seq.tokenizer import Tokenizer, load_chinese_base_vocab
from bert_seq2seq.utils import load_bert
data_path = "./person.xlsx"
vocab_path = "./state_dict/roberta_wwm_vocab.txt" # roberta模型字典的位置
model_name = "roberta" # 选择模型名字
model_path = "./state_dict/roberta_wwm_pytorch_model.bin" # roberta模型位置
recent_model_path = "" # 用于把已经训练好的模型继续训练
model_save_path = "./bert_relationship_classify_model.bin"
batch_size = 16
lr = 1e-5
# 加载字典
word2idx = load_chinese_base_vocab(vocab_path)
target = []
person_relation = pd.read_excel(data_path)
for index, row in person_relation.iterrows():
p = row[2]
if p not in target:
target.append(p)
print(target)
def read_corpus(data_path):
"""
读原始数据
"""
sents_src = []
sents_tgt = []
person_relation = pd.read_excel(data_path)
for index, row in person_relation.iterrows():
p = row[2]
s = row[0]
o = row[1]
text = row[3]
text = s + "#" + o + "#" + text
sents_src.append(text)
sents_tgt.append(int(target.index(p)))
return sents_src, sents_tgt
## 自定义dataset
class NLUDataset(Dataset):
"""
针对特定数据集,定义一个相关的取数据的方式
"""
def __init__(self, sents_src, sents_tgt):
## 一般init函数是加载所有数据
super(NLUDataset, self).__init__()
# 读原始数据
# self.sents_src, self.sents_tgt = read_corpus(poem_corpus_dir)
self.sents_src = sents_src
self.sents_tgt = sents_tgt
self.idx2word = {k: v for v, k in word2idx.items()}
self.tokenizer = Tokenizer(word2idx)
def __getitem__(self, i):
## 得到单个数据
# print(i)
src = self.sents_src[i]
tgt = self.sents_tgt[i]
token_ids, token_type_ids = self.tokenizer.encode(src)
output = {
"token_ids": token_ids,
"token_type_ids": token_type_ids,
"target_id": tgt
}
return output
def __len__(self):
return len(self.sents_src)
def collate_fn(batch):
"""
动态padding, batch为一部分sample
"""
def padding(indice, max_length, pad_idx=0):
"""
pad 函数
"""
pad_indice = [item + [pad_idx] * max(0, max_length - len(item)) for item in indice]
return torch.tensor(pad_indice)
token_ids = [data["token_ids"] for data in batch]
max_length = max([len(t) for t in token_ids])
token_type_ids = [data["token_type_ids"] for data in batch]
target_ids = [data["target_id"] for data in batch]
target_ids = torch.tensor(target_ids, dtype=torch.long)
token_ids_padded = padding(token_ids, max_length)
token_type_ids_padded = padding(token_type_ids, max_length)
return token_ids_padded, token_type_ids_padded, target_ids
class Trainer:
def __init__(self):
# 加载数据
self.sents_src, self.sents_tgt = read_corpus(data_path)
self.tokenier = Tokenizer(word2idx)
# 判断是否有可用GPU
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("device: " + str(self.device))
# 定义模型
self.bert_model = load_bert(word2idx, model_name=model_name, model_class="cls", target_size=len(target))
## 加载预训练的模型参数~
self.bert_model.load_pretrain_params(model_path)
# 将模型发送到计算设备(GPU或CPU)
self.bert_model.set_device(self.device)
# 声明需要优化的参数
self.optim_parameters = list(self.bert_model.parameters())
self.optimizer = torch.optim.Adam(self.optim_parameters, lr=lr, weight_decay=1e-3)
# 声明自定义的数据加载器
dataset = NLUDataset(self.sents_src, self.sents_tgt)
self.dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn)
def train(self, epoch):
# 一个epoch的训练
self.bert_model.train()
self.iteration(epoch, dataloader=self.dataloader, train=True)
def save(self, save_path):
"""
保存模型
"""
self.bert_model.save_all_params(save_path)
print("{} saved!".format(save_path))
def iteration(self, epoch, dataloader, train=True):
total_loss = 0
start_time = time.time() ## 得到当前时间
step = 0
for token_ids, token_type_ids, target_ids in tqdm(dataloader, position=0, leave=True):
step += 1
if step % 100 == 0:
self.bert_model.eval()
test_data = [
"杨惠之#吴道子#好在《历代名画补遗》中提到了杨惠之的线索,原来是他是吴道子的同门师兄弟,他们有一个共同的老师,叫做张僧繇。",
"杨惠之#张僧繇#好在《历代名画补遗》中提到了杨惠之的线索,原来是他是吴道子的同门师兄弟,他们有一个共同的老师,叫做张僧繇。",
"吴道子#张僧繇#好在《历代名画补遗》中提到了杨惠之的线索,原来是他是吴道子的同门师兄弟,他们有一个共同的老师,叫做张僧繇。"
]
for text in test_data:
text, text_ids = self.tokenier.encode(text)
text = torch.tensor(text, device=self.device).view(1, -1)
print(target[torch.argmax(self.bert_model(text)).item()])
self.bert_model.train()
token_ids = token_ids.to(self.device)
token_type_ids = token_type_ids.to(self.device)
target_ids = target_ids.to(self.device)
# 因为传入了target标签,因此会计算loss并且返回
predictions, loss = self.bert_model(token_ids,
labels=target_ids,
)
# 反向传播
if train:
# 清空之前的梯度
self.optimizer.zero_grad()
# 反向传播, 获取新的梯度
loss.backward()
# 用获取的梯度更新模型参数
self.optimizer.step()
# 为计算当前epoch的平均loss
total_loss += loss.item()
end_time = time.time()
spend_time = end_time - start_time
# 打印训练信息
print("epoch is " + str(epoch) + ". loss is " + str(total_loss) + ". spend time is " + str(spend_time))
# 保存模型
self.save(model_save_path)
if __name__ == '__main__':
trainer = Trainer()
train_epoches = 10
for epoch in range(train_epoches):
# 训练一个epoch
trainer.train(epoch)