forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultidimensional.jl
834 lines (739 loc) · 30 KB
/
multidimensional.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
# This file is a part of Julia. License is MIT: http://julialang.org/license
### Multidimensional iterators
module IteratorsMD
import Base: eltype, length, start, done, next, last, getindex, setindex!, linearindexing, min, max, eachindex, ndims
importall ..Base.Operators
import Base: simd_outer_range, simd_inner_length, simd_index, @generated
import Base: @nref, @ncall, @nif, @nexprs, LinearFast, LinearSlow, to_index, AbstractCartesianIndex
export CartesianIndex, CartesianRange
# Traits for linear indexing
linearindexing{A<:BitArray}(::Type{A}) = LinearFast()
# CartesianIndex
immutable CartesianIndex{N} <: AbstractCartesianIndex{N}
I::NTuple{N,Int}
CartesianIndex(index::NTuple{N,Integer}) = new(index)
end
CartesianIndex{N}(index::NTuple{N,Integer}) = CartesianIndex{N}(index)
(::Type{CartesianIndex})(index::Integer...) = CartesianIndex(index)
(::Type{CartesianIndex{N}}){N}(index::Integer...) = CartesianIndex{N}(index)
# Allow passing tuples smaller than N
@generated function (::Type{CartesianIndex{N}}){N,M}(index::NTuple{M,Integer})
M == N && return :(CartesianIndex(index))
M > N && return :(throw(DimensionMismatch("Cannot create CartesianIndex{$N} from $M indexes")))
args = [i <= M ? :(index[$i]) : 1 for i = 1:N]
:(CartesianIndex(tuple($(args...))))
end
# Un-nest passed CartesianIndexes
CartesianIndex(index::Union{Integer, CartesianIndex}...) = CartesianIndex(index)
@generated function CartesianIndex{N}(index::NTuple{N, Union{Integer, CartesianIndex}})
ex = Expr(:tuple)
for (i, T) in enumerate(index.parameters)
if T <: Integer
push!(ex.args, :(index[$i]))
else
push!(ex.args, Expr(:..., :(index[$i].I)))
end
end
:($(Expr(:meta, :inline)); CartesianIndex($ex))
end
# length
length{N}(::CartesianIndex{N})=N
length{N}(::Type{CartesianIndex{N}})=N
# indexing
getindex(index::CartesianIndex, i::Integer) = index.I[i]
# arithmetic, min/max
for op in (:+, :-, :min, :max)
@eval begin
@generated function ($op){N}(index1::CartesianIndex{N}, index2::CartesianIndex{N})
I = index1
args = [:($($op)(index1[$d],index2[$d])) for d = 1:N]
:($I($(args...)))
end
end
end
@generated function *{N}(a::Integer, index::CartesianIndex{N})
I = index
args = [:(a*index[$d]) for d = 1:N]
:($I($(args...)))
end
*(index::CartesianIndex,a::Integer)=*(a,index)
# Iteration
immutable CartesianRange{I<:CartesianIndex}
start::I
stop::I
end
@generated function CartesianRange{N}(I::CartesianIndex{N})
startargs = fill(1, N)
:(CartesianRange($I($(startargs...)), I))
end
CartesianRange{N}(sz::NTuple{N,Int}) = CartesianRange(CartesianIndex(sz))
ndims(R::CartesianRange) = length(R.start)
ndims{I<:CartesianIndex}(::Type{CartesianRange{I}}) = length(I)
@generated function eachindex{T,N}(::LinearSlow, A::AbstractArray{T,N})
startargs = fill(1, N)
stopargs = [:(size(A,$i)) for i=1:N]
meta = Expr(:meta, :inline)
:($meta; CartesianRange(CartesianIndex{$N}($(startargs...)), CartesianIndex{$N}($(stopargs...))))
end
@generated function eachindex(::LinearSlow, A::AbstractArray, B::AbstractArray...)
K = max(ndims(A), map(ndims, B)...)
startargs = fill(1, K)
stopargs = Array(Expr, K)
for i = 1:K
Bargs = [:(size(B[$j],$i)) for j = 1:length(B)]
stopargs[i] = :(max(size(A,$i),$(Bargs...)))
end
meta = Expr(:meta, :inline)
:($meta; CartesianRange(CartesianIndex{$K}($(startargs...)), CartesianIndex{$K}($(stopargs...))))
end
eltype{I}(::Type{CartesianRange{I}}) = I
@generated function start{I<:CartesianIndex}(iter::CartesianRange{I})
N = length(I)
cmp = [:(iter.start[$d] > iter.stop[$d]) for d = 1:N]
extest = Expr(:||, cmp...)
inc = [d < N ? :(iter.start[$d]) : :(iter.stop[$N]+1) for d = 1:N]
exstop = :(CartesianIndex{$N}($(inc...)))
quote
$extest ? $exstop : iter.start
end
end
@generated function next{I<:CartesianIndex}(iter::CartesianRange{I}, state)
N = length(I)
meta = Expr(:meta, :inline)
quote
$meta
index=state
@nif $N d->(index[d] < iter.stop[d]) d->(@nexprs($N, k->(ind_k = ifelse(k>=d, index[k] + (k==d), iter.start[k]))))
newindex = @ncall $N $I ind
index, newindex
end
end
@generated function done{I<:CartesianIndex}(iter::CartesianRange{I}, state)
N = length(I)
:(state[$N] > iter.stop[$N])
end
# 0-d cartesian ranges are special-cased to iterate once and only once
start{I<:CartesianIndex{0}}(iter::CartesianRange{I}) = false
next{I<:CartesianIndex{0}}(iter::CartesianRange{I}, state) = iter.start, true
done{I<:CartesianIndex{0}}(iter::CartesianRange{I}, state) = state
@generated function length{I<:CartesianIndex}(iter::CartesianRange{I})
N = length(I)
N == 0 && return 1
args = [:(iter.stop[$i]-iter.start[$i]+1) for i=1:N]
Expr(:call,:*,args...)
end
last(iter::CartesianRange) = iter.stop
@generated function simd_outer_range{I}(iter::CartesianRange{I})
N = length(I)
N == 0 && return :(CartesianRange(CartesianIndex{0}(),CartesianIndex{0}()))
startargs = [:(iter.start[$i]) for i=2:N]
stopargs = [:(iter.stop[$i]) for i=2:N]
:(CartesianRange(CartesianIndex{$(N-1)}($(startargs...)), CartesianIndex{$(N-1)}($(stopargs...))))
end
simd_inner_length{I<:CartesianIndex{0}}(iter::CartesianRange{I}, ::CartesianIndex) = 1
simd_inner_length(iter::CartesianRange, I::CartesianIndex) = iter.stop[1]-iter.start[1]+1
simd_index{I<:CartesianIndex{0}}(iter::CartesianRange{I}, ::CartesianIndex, I1::Int) = iter.start
@generated function simd_index{N}(iter::CartesianRange, Ilast::CartesianIndex{N}, I1::Int)
args = [d == 1 ? :(I1+iter.start[1]) : :(Ilast[$(d-1)]) for d = 1:N+1]
meta = Expr(:meta, :inline)
:($meta; CartesianIndex{$(N+1)}($(args...)))
end
end # IteratorsMD
using .IteratorsMD
# Recursively compute the lengths of a list of indices, without dropping scalars
# These need to be inlined for more than 3 indexes
index_lengths(A::AbstractArray, I::Colon) = (length(A),)
index_lengths(A::AbstractArray, I::AbstractArray{Bool}) = (sum(I),)
index_lengths(A::AbstractArray, I::AbstractArray) = (length(I),)
@inline index_lengths(A::AbstractArray, I...) = index_lengths_dim(A, 1, I...)
index_lengths_dim(A, dim) = ()
index_lengths_dim(A, dim, ::Colon) = (trailingsize(A, dim),)
@inline index_lengths_dim(A, dim, ::Colon, i, I...) = (size(A, dim), index_lengths_dim(A, dim+1, i, I...)...)
@inline index_lengths_dim(A, dim, ::Real, I...) = (1, index_lengths_dim(A, dim+1, I...)...)
@inline index_lengths_dim{N}(A, dim, ::CartesianIndex{N}, I...) = (1, index_shape_dim(A, dim+N, I...)...)
@inline index_lengths_dim(A, dim, i::AbstractArray{Bool}, I...) = (sum(i), index_lengths_dim(A, dim+1, I...)...)
@inline index_lengths_dim(A, dim, i::AbstractArray, I...) = (length(i), index_lengths_dim(A, dim+1, I...)...)
@inline index_lengths_dim{N}(A, dim, i::AbstractArray{CartesianIndex{N}}, I...) = (length(i), index_lengths_dim(A, dim+N, I...)...)
# shape of array to create for getindex() with indexes I, dropping scalars
index_shape(A::AbstractArray, I::AbstractArray) = size(I) # Linear index reshape
index_shape(A::AbstractArray, I::AbstractArray{Bool}) = (sum(I),) # Logical index
index_shape(A::AbstractArray, I::Colon) = (length(A),)
@inline index_shape(A::AbstractArray, I...) = index_shape_dim(A, 1, I...)
index_shape_dim(A, dim, I::Real...) = ()
index_shape_dim(A, dim, ::Colon) = (trailingsize(A, dim),)
@inline index_shape_dim(A, dim, ::Colon, i, I...) = (size(A, dim), index_shape_dim(A, dim+1, i, I...)...)
@inline index_shape_dim(A, dim, ::Real, I...) = (index_shape_dim(A, dim+1, I...)...)
@inline index_shape_dim{N}(A, dim, ::CartesianIndex{N}, I...) = (index_shape_dim(A, dim+N, I...)...)
@inline index_shape_dim(A, dim, i::AbstractVector{Bool}, I...) = (sum(i), index_shape_dim(A, dim+1, I...)...)
@inline index_shape_dim(A, dim, i::AbstractVector, I...) = (length(i), index_shape_dim(A, dim+1, I...)...)
@inline index_shape_dim{N}(A, dim, i::AbstractVector{CartesianIndex{N}}, I...) = (length(i), index_shape_dim(A, dim+N, I...)...)
### From abstractarray.jl: Internal multidimensional indexing definitions ###
# These are not defined on directly on getindex to avoid
# ambiguities for AbstractArray subtypes. See the note in abstractarray.jl
# Note that it's most efficient to call checkbounds first, and then to_index
@inline function _getindex(l::LinearIndexing, A::AbstractArray, I::Union{Real, AbstractArray, Colon}...)
@boundscheck checkbounds(A, I...)
_unsafe_getindex(l, A, I...)
end
@generated function _unsafe_getindex(::LinearIndexing, A::AbstractArray, I::Union{Real, AbstractArray, Colon}...)
N = length(I)
quote
# This is specifically *not* inlined.
@nexprs $N d->(I_d = to_index(I[d]))
dest = similar(A, @ncall $N index_shape A I)
@ncall $N checksize dest I
@ncall $N _unsafe_getindex! dest A I
end
end
# logical indexing optimization - don't use find (within to_index)
# This is inherently a linear operation in the source, but we could potentially
# use fast dividing integers to speed it up.
function _unsafe_getindex(::LinearIndexing, src::AbstractArray, I::AbstractArray{Bool})
# Both index_shape and checksize compute sum(I); manually hoist it out
N = sum(I)
dest = similar(src, (N,))
size(dest) == (N,) || throw(DimensionMismatch())
D = eachindex(dest)
Ds = start(D)
s = 0
for b in eachindex(I)
s+=1
@inbounds Ib = I[b]
if Ib
d, Ds = next(D, Ds)
@inbounds dest[d] = src[s]
end
end
dest
end
# Indexing with an array of indices is inherently linear in the source, but
# might be able to be optimized with fast dividing integers
@inline function _unsafe_getindex!(dest::AbstractArray, src::AbstractArray, I::AbstractArray)
D = eachindex(dest)
Ds = start(D)
for idx in I
d, Ds = next(D, Ds)
@inbounds dest[d] = src[idx]
end
dest
end
# Always index with the exactly indices provided.
@generated function _unsafe_getindex!(dest::AbstractArray, src::AbstractArray, I::Union{Real, AbstractVector, Colon}...)
N = length(I)
quote
$(Expr(:meta, :inline))
D = eachindex(dest)
Ds = start(D)
idxlens = index_lengths(src, I...) # TODO: unsplat?
@nloops $N i d->(1:idxlens[d]) d->(@inbounds j_d = getindex(I[d], i_d)) begin
d, Ds = next(D, Ds)
@inbounds dest[d] = @ncall $N getindex src j
end
dest
end
end
# checksize ensures the output array A is the correct size for the given indices
@noinline throw_checksize_error(A, dim, idx) = throw(DimensionMismatch("index $dim selects $(length(idx)) elements, but size(A, $dim) = $(size(A,dim))"))
@noinline throw_checksize_error(A, dim, idx::AbstractArray{Bool}) = throw(DimensionMismatch("index $dim selects $(sum(idx)) elements, but size(A, $dim) = $(size(A,dim))"))
checksize(A::AbstractArray, I::AbstractArray) = size(A) == size(I) || throw_checksize_error(A, 1, I)
checksize(A::AbstractArray, I::AbstractArray{Bool}) = length(A) == sum(I) || throw_checksize_error(A, 1, I)
@inline checksize(A::AbstractArray, I...) = _checksize(A, 1, I...)
_checksize(A::AbstractArray, dim) = true
# Drop dimensions indexed by scalars, ignore colons
@inline _checksize(A::AbstractArray, dim, ::Real, J...) = _checksize(A, dim, J...)
@inline _checksize(A::AbstractArray, dim, ::Colon, J...) = _checksize(A, dim+1, J...)
@inline function _checksize(A::AbstractArray, dim, I, J...)
size(A, dim) == length(I) || throw_checksize_error(A, dim, I)
_checksize(A, dim+1, J...)
end
@inline function _checksize(A::AbstractArray, dim, I::AbstractVector{Bool}, J...)
size(A, dim) == sum(I) || throw_checksize_error(A, dim, I)
_checksize(A, dim+1, J...)
end
## setindex! ##
# For multi-element setindex!, we check bounds, convert the indices (to_index),
# and ensure the value to set is either an AbstractArray or a Repeated scalar
# before redispatching to the _unsafe_batchsetindex!
_iterable(v::AbstractArray) = v
_iterable(v) = repeated(v)
@inline function _setindex!(l::LinearIndexing, A::AbstractArray, x, J::Union{Real,AbstractArray,Colon}...)
@boundscheck checkbounds(A, J...)
_unsafe_setindex!(l, A, x, J...)
end
@inline function _unsafe_setindex!(::LinearIndexing, A::AbstractArray, x, J::Union{Real,AbstractArray,Colon}...)
_unsafe_batchsetindex!(A, _iterable(x), to_indexes(J...)...)
end
# 1-d logical indexing: override the above to avoid calling find (in to_index)
function _unsafe_setindex!(::LinearIndexing, A::AbstractArray, x, I::AbstractArray{Bool})
X = _iterable(x)
Xs = start(X)
i = 0
c = 0
for b in eachindex(I)
i+=1
@inbounds Ib = I[b]
if Ib
done(X, Xs) && throw_setindex_mismatch(x, c+1)
(v, Xs) = next(X, Xs)
@inbounds A[i] = v
c += 1
end
end
setindex_shape_check(X, c)
A
end
@generated function _unsafe_batchsetindex!(A::AbstractArray, X, I::Union{Real,AbstractArray,Colon}...)
N = length(I)
quote
@nexprs $N d->(I_d = I[d])
idxlens = @ncall $N index_lengths A I
@ncall $N setindex_shape_check X (d->idxlens[d])
Xs = start(X)
@nloops $N i d->(1:idxlens[d]) d->(@inbounds j_d = I_d[i_d]) begin
v, Xs = next(X, Xs)
@inbounds @ncall $N setindex! A v j
end
A
end
end
# Cartesian indexing
function cartindex_exprs(indexes, syms)
exprs = Any[]
for (i,ind) in enumerate(indexes)
if ind <: CartesianIndex
for j = 1:length(ind)
push!(exprs, :($syms[$i][$j]))
end
else
push!(exprs, :($syms[$i]))
end
end
if isempty(exprs)
push!(exprs, 1) # Handle the zero-dimensional case
end
exprs
end
@generated function _getindex{T,N}(l::LinearIndexing, A::AbstractArray{T,N}, I::Union{Real,AbstractArray,Colon,CartesianIndex}...)
:(@_propagate_inbounds_meta; getindex(A, $(cartindex_exprs(I, :I)...)))
end
@generated function _setindex!{T,N}(l::LinearIndexing, A::AbstractArray{T,N}, v, I::Union{Real,AbstractArray,Colon,CartesianIndex}...)
:(@_propagate_inbounds_meta; setindex!(A, v, $(cartindex_exprs(I, :I)...)))
end
##
@generated function findn{T,N}(A::AbstractArray{T,N})
quote
nnzA = countnz(A)
@nexprs $N d->(I_d = Array(Int, nnzA))
k = 1
@nloops $N i A begin
@inbounds if (@nref $N A i) != zero(T)
@nexprs $N d->(I_d[k] = i_d)
k += 1
end
end
@ntuple $N I
end
end
## SubArray index merging
# A view created like V = A[2:3:8, 5:2:17] can later be indexed as V[2:7],
# creating a new 1d view.
# In such cases we have to collapse the 2d space spanned by the ranges.
#
# API:
# merge_indexes(V, indexes::NTuple, index)
# indexes encodes the view's trailing indexes into the parent array,
# and index encodes the subset of these elements that we'll select.
#
# It returns a CartesianIndex or array of CartesianIndexes.
# Checking 'in' a range is fast -- so check all possibilities and keep the good ones
@generated function merge_indexes{N}(V, indexes::NTuple{N}, index::Union{Colon, Range})
# There may be a vector of cartesian indices in the passed indexes... which
# makes the number of indices more than N. Since we pre-allocate the array
# of CartesianIndexes, we need to figure out how big to make it
M = 0
for T in indexes.parameters
T <: CartesianIndex ? (M += length(T)) : (M += 1)
end
index_length_expr = index <: Colon ? symbol(string("Istride_", N+1)) : :(length(index))
quote
Cartesian.@nexprs $N d->(I_d = indexes[d])
dimlengths = Cartesian.@ncall $N index_lengths_dim V.parent length(V.indexes)-N+1 I
Istride_1 = 1 # strides of the indexes to merge
Cartesian.@nexprs $N d->(Istride_{d+1} = Istride_d*dimlengths[d])
idx_len = $(index_length_expr)
if idx_len < 0.1*$(symbol(string("Istride_", N+1))) # this has not been carefully tuned
return merge_indexes_div(V, indexes, index, dimlengths)
end
Cartesian.@nexprs $N d->(counter_d = 1) # counter_0 is the linear index
k = 0
merged = Array(CartesianIndex{$M}, idx_len)
Cartesian.@nloops $N i d->(1:dimlengths[d]) d->(counter_{d-1} = counter_d + (i_d-1)*Istride_d; @inbounds idx_d = I_d[i_d]) begin
if counter_0 in index # this branch is elided for ::Colon
@inbounds merged[k+=1] = Cartesian.@ncall $N CartesianIndex{$M} idx
end
end
merged
end
end
# mapping getindex across the parent and subindices rapidly gets too big to
# automatically inline, but it is crucial that it does so to avoid allocations
# Unlike SubArray's reindex, merge_indexes doesn't drop any indices.
@inline inlinemap(f, t::Tuple, s::Tuple) = (f(t[1], s[1]), inlinemap(f, tail(t), tail(s))...)
inlinemap(f, t::Tuple{}, s::Tuple{}) = ()
inlinemap(f, t::Tuple{}, s::Tuple) = ()
inlinemap(f, t::Tuple, s::Tuple{}) = ()
# Otherwise, we fall back to the slow div/rem method, using ind2sub.
@inline merge_indexes{N}(V, indexes::NTuple{N}, index) = merge_indexes_div(V, indexes, index, index_lengths_dim(V.parent, length(V.indexes)-N+1, indexes...))
@inline merge_indexes_div{N}(V, indexes::NTuple{N}, index::Real, dimlengths) = CartesianIndex(inlinemap(getindex, indexes, ind2sub(dimlengths, index)))
merge_indexes_div{N}(V, indexes::NTuple{N}, index, dimlengths) = [CartesianIndex(inlinemap(getindex, indexes, ind2sub(dimlengths, i))) for i in index]
merge_indexes_div{N}(V, indexes::NTuple{N}, index::Colon, dimlengths) = [CartesianIndex(inlinemap(getindex, indexes, ind2sub(dimlengths, i))) for i in 1:prod(dimlengths)]
cumsum(A::AbstractArray, axis::Integer=1) = cumsum!(similar(A, Base._cumsum_type(A)), A, axis)
cumsum!(B, A::AbstractArray) = cumsum!(B, A, 1)
cumprod(A::AbstractArray, axis::Integer=1) = cumprod!(similar(A), A, axis)
cumprod!(B, A) = cumprod!(B, A, 1)
for (f, op) in ((:cumsum!, :+),
(:cumprod!, :*))
@eval begin
@generated function ($f){T,N}(B, A::AbstractArray{T,N}, axis::Integer)
quote
if size(B, axis) < 1
return B
end
size(B) == size(A) || throw(DimensionMismatch("Size of B must match A"))
if axis == 1
# We can accumulate to a temporary variable, which allows register usage and will be slightly faster
@inbounds @nloops $N i d->(d > 1 ? (1:size(A,d)) : (1:1)) begin
tmp = convert(eltype(B), @nref($N, A, i))
@nref($N, B, i) = tmp
for i_1 = 2:size(A,1)
tmp = ($($op))(tmp, @nref($N, A, i))
@nref($N, B, i) = tmp
end
end
else
@nexprs $N d->(isaxis_d = axis == d)
# Copy the initial element in each 1d vector along dimension `axis`
@inbounds @nloops $N i d->(d == axis ? (1:1) : (1:size(A,d))) @nref($N, B, i) = @nref($N, A, i)
# Accumulate
@inbounds @nloops $N i d->((1+isaxis_d):size(A, d)) d->(j_d = i_d - isaxis_d) begin
@nref($N, B, i) = ($($op))(@nref($N, B, j), @nref($N, A, i))
end
end
B
end
end
end
end
### from abstractarray.jl
function fill!{T}(A::AbstractArray{T}, x)
xT = convert(T, x)
for I in eachindex(A)
@inbounds A[I] = xT
end
A
end
function copy!{T,N}(dest::AbstractArray{T,N}, src::AbstractArray{T,N})
samesize = true
for d = 1:N
if size(dest,d) != size(src,d)
samesize = false
break
end
end
if samesize && linearindexing(dest) == linearindexing(src)
for I in eachindex(dest)
@inbounds dest[I] = src[I]
end
else
length(dest) >= length(src) || throw(BoundsError())
iterdest = eachindex(dest)
sdest = start(iterdest)
for Isrc in eachindex(src)
Idest, sdest = next(iterdest, sdest)
@inbounds dest[Idest] = src[Isrc]
end
end
dest
end
### BitArrays
## getindex
# contiguous multidimensional indexing: if the first dimension is a range,
# we can get some performance from using copy_chunks!
@inline function _unsafe_getindex!(X::BitArray, B::BitArray, I0::Union{UnitRange{Int}, Colon})
copy_chunks!(X.chunks, 1, B.chunks, first(I0), index_lengths(B, I0)[1])
return X
end
# Optimization where the inner dimension is contiguous improves perf dramatically
@generated function _unsafe_getindex!(X::BitArray, B::BitArray, I0::Union{Colon,UnitRange{Int}}, I::Union{Int,UnitRange{Int},Colon}...)
N = length(I)
quote
$(Expr(:meta, :inline))
@nexprs $N d->(I_d = I[d])
f0 = first(I0)
l0 = size(X, 1)
gap_lst_1 = 0
@nexprs $N d->(gap_lst_{d+1} = size(X, d+1))
stride = 1
ind = f0
@nexprs $N d->begin
stride *= size(B, d)
stride_lst_d = stride
ind += stride * (first(I_d) - 1)
gap_lst_{d+1} *= stride
end
storeind = 1
Xc, Bc = X.chunks, B.chunks
idxlens = index_lengths(B, I0, I...) # TODO: unsplat?
@nloops($N, i, d->(1:idxlens[d+1]),
d->nothing, # PRE
d->(ind += stride_lst_d - gap_lst_d), # POST
begin # BODY
copy_chunks!(Xc, storeind, Bc, ind, l0)
storeind += l0
end)
return X
end
end
# in the general multidimensional non-scalar case, can we do about 10% better
# in most cases by manually hoisting the bitarray chunks access out of the loop
# (This should really be handled by the compiler or with an immutable BitArray)
@generated function _unsafe_getindex!(X::BitArray, B::BitArray, I::Union{Int,AbstractVector{Int},Colon}...)
N = length(I)
quote
$(Expr(:meta, :inline))
stride_1 = 1
@nexprs $N d->(stride_{d+1} = stride_d*size(B, d))
$(symbol(:offset_, N)) = 1
ind = 0
Xc, Bc = X.chunks, B.chunks
idxlens = index_lengths(B, I...) # TODO: unsplat?
@nloops $N i d->(1:idxlens[d]) d->(@inbounds offset_{d-1} = offset_d + (I[d][i_d]-1)*stride_d) begin
ind += 1
unsafe_bitsetindex!(Xc, unsafe_bitgetindex(Bc, offset_0), ind)
end
return X
end
end
## setindex!
# contiguous multidimensional indexing: if the first dimension is a range,
# we can get some performance from using copy_chunks!
@inline function setindex!(B::BitArray, X::BitArray, I0::UnitRange{Int})
@boundscheck checkbounds(B, I0)
l0 = length(I0)
setindex_shape_check(X, l0)
l0 == 0 && return B
f0 = first(I0)
copy_chunks!(B.chunks, f0, X.chunks, 1, l0)
return B
end
@inline function setindex!(B::BitArray, x::Bool, I0::UnitRange{Int})
@boundscheck checkbounds(B, I0)
l0 = length(I0)
l0 == 0 && return B
f0 = first(I0)
fill_chunks!(B.chunks, x, f0, l0)
return B
end
@inline function setindex!(B::BitArray, X::BitArray, I0::UnitRange{Int}, I::Union{Int,UnitRange{Int}}...)
@boundscheck checkbounds(B, I0, I...)
_unsafe_setindex!(B, X, I0, I...)
end
@generated function _unsafe_setindex!(B::BitArray, X::BitArray, I0::UnitRange{Int}, I::Union{Int,UnitRange{Int}}...)
N = length(I)
quote
# TODO: need to setindex_shape_check
isempty(X) && return B
f0 = first(I0)
l0 = length(I0)
gap_lst_1 = 0
@nexprs $N d->(gap_lst_{d+1} = length(I[d]))
stride = 1
ind = f0
@nexprs $N d->begin
stride *= size(B, d)
stride_lst_d = stride
ind += stride * (first(I[d]) - 1)
gap_lst_{d+1} *= stride
end
refind = 1
@nloops($N, i, d->I[d],
d->nothing, # PRE
d->(ind += stride_lst_d - gap_lst_d), # POST
begin # BODY
copy_chunks!(B.chunks, ind, X.chunks, refind, l0)
refind += l0
end)
return B
end
end
@inline function setindex!(B::BitArray, x::Bool, I0::UnitRange{Int}, I::Union{Int,UnitRange{Int}}...)
@boundscheck checkbounds(B, I0, I...)
_unsafe_setindex!(B, x, I0, I...)
end
@generated function _unsafe_setindex!(B::BitArray, x::Bool, I0::UnitRange{Int}, I::Union{Int,UnitRange{Int}}...)
N = length(I)
quote
f0 = first(I0)
l0 = length(I0)
l0 == 0 && return B
@nexprs $N d->(isempty(I[d]) && return B)
gap_lst_1 = 0
@nexprs $N d->(gap_lst_{d+1} = length(I[d]))
stride = 1
ind = f0
@nexprs $N d->begin
stride *= size(B, d)
stride_lst_d = stride
ind += stride * (first(I[d]) - 1)
gap_lst_{d+1} *= stride
end
@nloops($N, i, d->I[d],
d->nothing, # PRE
d->(ind += stride_lst_d - gap_lst_d), # POST
fill_chunks!(B.chunks, x, ind, l0) # BODY
)
return B
end
end
## findn
@generated function findn{N}(B::BitArray{N})
quote
nnzB = countnz(B)
I = ntuple(x->Array(Int, nnzB), $N)
if nnzB > 0
count = 1
@nloops $N i B begin
if (@nref $N B i) # TODO: should avoid bounds checking
@nexprs $N d->(I[d][count] = i_d)
count += 1
end
end
end
return I
end
end
## isassigned
@generated function isassigned(B::BitArray, I_0::Int, I::Int...)
N = length(I)
quote
@nexprs $N d->(I_d = I[d])
stride = 1
index = I_0
@nexprs $N d->begin
l = size(B,d)
stride *= l
1 <= I_{d-1} <= l || return false
index += (I_d - 1) * stride
end
return isassigned(B, index)
end
end
## permutedims
for (V, PT, BT) in [((:N,), BitArray, BitArray), ((:T,:N), Array, StridedArray)]
@eval @generated function permutedims!{$(V...)}(P::$PT{$(V...)}, B::$BT{$(V...)}, perm)
quote
dimsB = size(B)
length(perm) == N || throw(ArgumentError("expected permutation of size $N, but length(perm)=$(length(perm))"))
isperm(perm) || throw(ArgumentError("input is not a permutation"))
dimsP = size(P)
for i = 1:length(perm)
dimsP[i] == dimsB[perm[i]] || throw(DimensionMismatch("destination tensor of incorrect size"))
end
#calculates all the strides
strides_1 = 0
@nexprs $N d->(strides_{d+1} = stride(B, perm[d]))
#Creates offset, because indexing starts at 1
offset = 1 - sum(@ntuple $N d->strides_{d+1})
if isa(B, SubArray)
offset += first_index(B::SubArray) - 1
B = B.parent
end
ind = 1
@nexprs 1 d->(counts_{$N+1} = strides_{$N+1}) # a trick to set counts_($N+1)
@nloops($N, i, P,
d->(counts_d = strides_d), # PRE
d->(counts_{d+1} += strides_{d+1}), # POST
begin # BODY
sumc = sum(@ntuple $N d->counts_{d+1})
@inbounds P[ind] = B[sumc+offset]
ind += 1
end)
return P
end
end
end
## unique across dim
# TODO: this doesn't fit into the new hashing scheme in any obvious way
immutable Prehashed
hash::UInt
end
hash(x::Prehashed) = x.hash
"""
unique(itr[, dim])
Returns an array containing only the unique elements of the iterable `itr`, in
the order that the first of each set of equivalent elements originally appears.
If `dim` is specified, returns unique regions of the array `itr` along `dim`.
"""
@generated function unique{T,N}(A::AbstractArray{T,N}, dim::Int)
quote
1 <= dim <= $N || return copy(A)
hashes = zeros(UInt, size(A, dim))
# Compute hash for each row
k = 0
@nloops $N i A d->(if d == dim; k = i_d; end) begin
@inbounds hashes[k] = hash(hashes[k], hash((@nref $N A i)))
end
# Collect index of first row for each hash
uniquerow = Array(Int, size(A, dim))
firstrow = Dict{Prehashed,Int}()
for k = 1:size(A, dim)
uniquerow[k] = get!(firstrow, Prehashed(hashes[k]), k)
end
uniquerows = collect(values(firstrow))
# Check for collisions
collided = falses(size(A, dim))
@inbounds begin
@nloops $N i A d->(if d == dim
k = i_d
j_d = uniquerow[k]
else
j_d = i_d
end) begin
if (@nref $N A j) != (@nref $N A i)
collided[k] = true
end
end
end
if any(collided)
nowcollided = BitArray(size(A, dim))
while any(collided)
# Collect index of first row for each collided hash
empty!(firstrow)
for j = 1:size(A, dim)
collided[j] || continue
uniquerow[j] = get!(firstrow, Prehashed(hashes[j]), j)
end
for v in values(firstrow)
push!(uniquerows, v)
end
# Check for collisions
fill!(nowcollided, false)
@nloops $N i A d->begin
if d == dim
k = i_d
j_d = uniquerow[k]
(!collided[k] || j_d == k) && continue
else
j_d = i_d
end
end begin
if (@nref $N A j) != (@nref $N A i)
nowcollided[k] = true
end
end
(collided, nowcollided) = (nowcollided, collided)
end
end
@nref $N A d->d == dim ? sort!(uniquerows) : (1:size(A, d))
end
end