forked from tesseract-ocr/tesseract
-
Notifications
You must be signed in to change notification settings - Fork 0
/
normmatch.cpp
213 lines (191 loc) · 7.51 KB
/
normmatch.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
/******************************************************************************
** Filename: normmatch.c
** Purpose: Simple matcher based on character normalization features.
** Author: Dan Johnson
**
** (c) Copyright Hewlett-Packard Company, 1988.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
******************************************************************************/
/*----------------------------------------------------------------------------
Include Files and Type Defines
----------------------------------------------------------------------------*/
#include "normmatch.h"
#include "classify.h"
#include "clusttool.h"
#include "helpers.h"
#include "normfeat.h"
#include "params.h"
#include "unicharset.h"
#include <cmath>
#include <cstdio>
#include <sstream> // for std::istringstream
namespace tesseract {
struct NORM_PROTOS {
NORM_PROTOS(size_t n) : NumProtos(n), Protos(n) {
}
int NumParams = 0;
int NumProtos;
PARAM_DESC *ParamDesc = nullptr;
std::vector<LIST> Protos;
};
/*----------------------------------------------------------------------------
Private Code
----------------------------------------------------------------------------*/
/**
* @name NormEvidenceOf
*
* Return the new type of evidence number corresponding to this
* normalization adjustment. The equation that represents the transform is:
* 1 / (1 + (NormAdj / midpoint) ^ curl)
*/
static double NormEvidenceOf(double NormAdj) {
NormAdj /= classify_norm_adj_midpoint;
if (classify_norm_adj_curl == 3) {
NormAdj = NormAdj * NormAdj * NormAdj;
} else if (classify_norm_adj_curl == 2) {
NormAdj = NormAdj * NormAdj;
} else {
NormAdj = pow(NormAdj, classify_norm_adj_curl);
}
return (1.0 / (1.0 + NormAdj));
}
/*----------------------------------------------------------------------------
Variables
----------------------------------------------------------------------------*/
/** control knobs used to control the normalization adjustment process */
double_VAR(classify_norm_adj_midpoint, 32.0, "Norm adjust midpoint ...");
double_VAR(classify_norm_adj_curl, 2.0, "Norm adjust curl ...");
/** Weight of width variance against height and vertical position. */
const double kWidthErrorWeighting = 0.125;
/*----------------------------------------------------------------------------
Public Code
----------------------------------------------------------------------------*/
/**
* This routine compares Features against each character
* normalization proto for ClassId and returns the match
* rating of the best match.
* @param ClassId id of class to match against
* @param feature character normalization feature
* @param DebugMatch controls dump of debug info
*
* Globals:
* #NormProtos character normalization prototypes
*
* @return Best match rating for Feature against protos of ClassId.
*/
float Classify::ComputeNormMatch(CLASS_ID ClassId, const FEATURE_STRUCT &feature, bool DebugMatch) {
if (ClassId >= NormProtos->NumProtos) {
ClassId = NO_CLASS;
}
/* handle requests for classification as noise */
if (ClassId == NO_CLASS) {
/* kludge - clean up constants and make into control knobs later */
float Match = (feature.Params[CharNormLength] * feature.Params[CharNormLength] * 500.0f +
feature.Params[CharNormRx] * feature.Params[CharNormRx] * 8000.0f +
feature.Params[CharNormRy] * feature.Params[CharNormRy] * 8000.0f);
return (1.0f - NormEvidenceOf(Match));
}
float BestMatch = FLT_MAX;
LIST Protos = NormProtos->Protos[ClassId];
if (DebugMatch) {
tprintf("\nChar norm for class %s\n", unicharset.id_to_unichar(ClassId));
}
int ProtoId = 0;
iterate(Protos) {
auto Proto = reinterpret_cast<PROTOTYPE *>(Protos->first_node());
float Delta = feature.Params[CharNormY] - Proto->Mean[CharNormY];
float Match = Delta * Delta * Proto->Weight.Elliptical[CharNormY];
if (DebugMatch) {
tprintf("YMiddle: Proto=%g, Delta=%g, Var=%g, Dist=%g\n", Proto->Mean[CharNormY], Delta,
Proto->Weight.Elliptical[CharNormY], Match);
}
Delta = feature.Params[CharNormRx] - Proto->Mean[CharNormRx];
Match += Delta * Delta * Proto->Weight.Elliptical[CharNormRx];
if (DebugMatch) {
tprintf("Height: Proto=%g, Delta=%g, Var=%g, Dist=%g\n", Proto->Mean[CharNormRx], Delta,
Proto->Weight.Elliptical[CharNormRx], Match);
}
// Ry is width! See intfx.cpp.
Delta = feature.Params[CharNormRy] - Proto->Mean[CharNormRy];
if (DebugMatch) {
tprintf("Width: Proto=%g, Delta=%g, Var=%g\n", Proto->Mean[CharNormRy], Delta,
Proto->Weight.Elliptical[CharNormRy]);
}
Delta = Delta * Delta * Proto->Weight.Elliptical[CharNormRy];
Delta *= kWidthErrorWeighting;
Match += Delta;
if (DebugMatch) {
tprintf("Total Dist=%g, scaled=%g, sigmoid=%g, penalty=%g\n", Match,
Match / classify_norm_adj_midpoint, NormEvidenceOf(Match),
256 * (1 - NormEvidenceOf(Match)));
}
if (Match < BestMatch) {
BestMatch = Match;
}
ProtoId++;
}
return 1.0 - NormEvidenceOf(BestMatch);
} /* ComputeNormMatch */
void Classify::FreeNormProtos() {
if (NormProtos != nullptr) {
for (int i = 0; i < NormProtos->NumProtos; i++) {
FreeProtoList(&NormProtos->Protos[i]);
}
delete[] NormProtos->ParamDesc;
delete NormProtos;
NormProtos = nullptr;
}
}
/**
* This routine allocates a new data structure to hold
* a set of character normalization protos. It then fills in
* the data structure by reading from the specified File.
* @param fp open text file to read normalization protos from
* Globals: none
* @return Character normalization protos.
*/
NORM_PROTOS *Classify::ReadNormProtos(TFile *fp) {
char unichar[2 * UNICHAR_LEN + 1];
UNICHAR_ID unichar_id;
LIST Protos;
int NumProtos;
/* allocate and initialization data structure */
auto NormProtos = new NORM_PROTOS(unicharset.size());
/* read file header and save in data structure */
NormProtos->NumParams = ReadSampleSize(fp);
NormProtos->ParamDesc = ReadParamDesc(fp, NormProtos->NumParams);
/* read protos for each class into a separate list */
const int kMaxLineSize = 100;
char line[kMaxLineSize];
while (fp->FGets(line, kMaxLineSize) != nullptr) {
std::istringstream stream(line);
stream.imbue(std::locale::classic());
stream >> unichar >> NumProtos;
if (stream.fail()) {
continue;
}
if (unicharset.contains_unichar(unichar)) {
unichar_id = unicharset.unichar_to_id(unichar);
Protos = NormProtos->Protos[unichar_id];
for (int i = 0; i < NumProtos; i++) {
Protos = push_last(Protos, ReadPrototype(fp, NormProtos->NumParams));
}
NormProtos->Protos[unichar_id] = Protos;
} else {
tprintf("Error: unichar %s in normproto file is not in unichar set.\n", unichar);
for (int i = 0; i < NumProtos; i++) {
FreePrototype(ReadPrototype(fp, NormProtos->NumParams));
}
}
}
return NormProtos;
} /* ReadNormProtos */
} // namespace tesseract