-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_netP
90 lines (73 loc) · 2.74 KB
/
test_netP
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
### Copyright (C) 2017 NVIDIA Corporation. All rights reserved.
### Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
import os
from collections import OrderedDict
from torch.autograd import Variable
from options.test_options import TestOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
import util.util as util
from util.visualizer import Visualizer
from util import html
import torch
opt = TestOptions().parse(save=False)
opt.nThreads = 1 # test code only supports nThreads = 1
opt.batchSize = 1 # test code only supports batchSize = 1
opt.serial_batches = True # no shuffle
opt.no_flip = True # no flip
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
visualizer = Visualizer(opt)
# create website
web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch))
webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch))
def merge_image(no_bg_tensor, bg_tensor, label):
assert no_bg_tensor.dim() == 3
mask = (label == 0).type(torch.FloatTensor)
mask_f = (label != 0).type(torch.FloatTensor)
return no_bg_tensor.type(torch.FloatTensor) * mask_f + bg_tensor * mask
# test
if not opt.engine and not opt.onnx:
model = create_model(opt)
if opt.data_type == 16:
model.half()
elif opt.data_type == 8:
model.type(torch.uint8)
if opt.verbose:
pass
print(model)
else:
from run_engine import run_trt_engine, run_onnx
for i, data in enumerate(dataset):
import numpy as np
from PIL import Image
import shutil
import matplotlib.pyplot as plt
path = str(data['path'])
print(path)
path=path[4:len(path)-2]
n = path.find('_label/')
#rellenamos segunda imagen
try:
path_b=path[0:n]+'2_label/'+path[n+7:len(path)]
Image.open(path_b)
except:
g_label = model.inference_parsing(data['label'], data['bg_contentimage'])
img = g_label.cpu().detach().numpy()[0]
img = np.array(img, dtype='uint8')
#array_i = np.save("./datasets/helen_align/edit_label/1000.npy", img3)
img = Image.fromarray(img)
print('Generamos la mascara ' + path)
img.save(path)
path2 = path[0:n] + '2' + path[n:len(path)]
print('La copiamos en ' + path2)
img.save(path2)
# img1 = data['bg_contentimage'].cpu().detach().numpy()[0][0]
# img2 = data['label'].cpu().detach().numpy()[0][0]
# plt.subplot(3, 1, 1)
# plt.imshow(img1, cmap='gray')
# plt.subplot(3, 1, 2)
# plt.imshow(img2, cmap='gray')
# plt.subplot(3, 1, 3)
# plt.imshow(img, cmap='gray')
# plt.show()