The iBreakDown
package is a model agnostic tool for explanation of predictions from black boxes ML models.
Break Down Table shows contributions of every variable to a final prediction.
Break Down Plot presents variable contributions in a concise graphical way.
SHAP (Shapley Additive Attributions) values are calculated as average from random Break Down profiles.
This package works for binary classifiers as well as regression models.
iBreakDown
is a successor of the breakDown package. It is faster (complexity O(p) instead of O(p^2)). It supports interactions and interactive explainers with D3.js plots.
It is a part of DrWhy.AI collection of tools for XAI.
# the easiest way to get iBreakDown is to install it from CRAN:
install.packages("iBreakDown")
# Or the the development version from GitHub:
# install.packages("devtools")
devtools::install_github("ModelOriented/iBreakDown")
Find lots of R examples at iBreakDown
website: https://ModelOriented.github.io/iBreakDown/
Methodology behind the iBreakDown package is described in the arxiv paper and VEEDD book.
This version also works with D3! see an example and demo
Work on this package was financially supported by the 'NCN Opus grant 2016/21/B/ST6/02176'.