forked from TheAlgorithms/C-Plus-Plus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
binaryheap.cpp
142 lines (120 loc) · 3.54 KB
/
binaryheap.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
/**
* \file
* \brief A C++ program to demonstrate common Binary Heap Operations
*/
#include <climits>
#include <iostream>
#include <utility>
/** A class for Min Heap */
class MinHeap {
int *harr; ///< pointer to array of elements in heap
int capacity; ///< maximum possible size of min heap
int heap_size; ///< Current number of elements in min heap
public:
/** Constructor: Builds a heap from a given array a[] of given size
* \param[in] capacity initial heap capacity
*/
explicit MinHeap(int cap) {
heap_size = 0;
capacity = cap;
harr = new int[cap];
}
/** to heapify a subtree with the root at given index */
void MinHeapify(int);
int parent(int i) { return (i - 1) / 2; }
/** to get index of left child of node at index i */
int left(int i) { return (2 * i + 1); }
/** to get index of right child of node at index i */
int right(int i) { return (2 * i + 2); }
/** to extract the root which is the minimum element */
int extractMin();
/** Decreases key value of key at index i to new_val */
void decreaseKey(int i, int new_val);
/** Returns the minimum key (key at root) from min heap */
int getMin() { return harr[0]; }
/** Deletes a key stored at index i */
void deleteKey(int i);
/** Inserts a new key 'k' */
void insertKey(int k);
~MinHeap() { delete[] harr; }
};
// Inserts a new key 'k'
void MinHeap::insertKey(int k) {
if (heap_size == capacity) {
std::cout << "\nOverflow: Could not insertKey\n";
return;
}
// First insert the new key at the end
heap_size++;
int i = heap_size - 1;
harr[i] = k;
// Fix the min heap property if it is violated
while (i != 0 && harr[parent(i)] > harr[i]) {
std::swap(harr[i], harr[parent(i)]);
i = parent(i);
}
}
/** Decreases value of key at index 'i' to new_val. It is assumed that new_val
* is smaller than harr[i].
*/
void MinHeap::decreaseKey(int i, int new_val) {
harr[i] = new_val;
while (i != 0 && harr[parent(i)] > harr[i]) {
std::swap(harr[i], harr[parent(i)]);
i = parent(i);
}
}
// Method to remove minimum element (or root) from min heap
int MinHeap::extractMin() {
if (heap_size <= 0)
return INT_MAX;
if (heap_size == 1) {
heap_size--;
return harr[0];
}
// Store the minimum value, and remove it from heap
int root = harr[0];
harr[0] = harr[heap_size - 1];
heap_size--;
MinHeapify(0);
return root;
}
/** This function deletes key at index i. It first reduced value to minus
* infinite, then calls extractMin()
*/
void MinHeap::deleteKey(int i) {
decreaseKey(i, INT_MIN);
extractMin();
}
/** A recursive method to heapify a subtree with the root at given index
* This method assumes that the subtrees are already heapified
*/
void MinHeap::MinHeapify(int i) {
int l = left(i);
int r = right(i);
int smallest = i;
if (l < heap_size && harr[l] < harr[i])
smallest = l;
if (r < heap_size && harr[r] < harr[smallest])
smallest = r;
if (smallest != i) {
std::swap(harr[i], harr[smallest]);
MinHeapify(smallest);
}
}
// Driver program to test above functions
int main() {
MinHeap h(11);
h.insertKey(3);
h.insertKey(2);
h.deleteKey(1);
h.insertKey(15);
h.insertKey(5);
h.insertKey(4);
h.insertKey(45);
std::cout << h.extractMin() << " ";
std::cout << h.getMin() << " ";
h.decreaseKey(2, 1);
std::cout << h.getMin();
return 0;
}