forked from mwaskom/seaborn-data
-
Notifications
You must be signed in to change notification settings - Fork 0
/
taxis.py
45 lines (37 loc) · 1.35 KB
/
taxis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import pandas as pd
COLUMN_MAP = {
"tpep_pickup_datetime": "pickup",
"tpep_dropoff_datetime": "dropoff",
"passenger_count": "passengers",
"trip_distance": "distance",
"fare_amount": "fare",
"tip_amount": "tip",
"tolls_amount": "tolls",
"total_amount": "total",
"color": "color",
}
PAYMENT_TYPES = {
1: "credit card",
2: "cash",
}
MAX_TRIP_DURATION = 8000
if __name__ == "__main__":
raw = pd.read_csv(
"raw/taxis.csv",
parse_dates=["tpep_pickup_datetime", "tpep_dropoff_datetime"]
).rename(columns=str.lower)
loc = pd.read_csv("raw/taxi_zones.csv").set_index("LocationID").drop_duplicates()
clean = (
raw[list(COLUMN_MAP)]
.rename(columns=COLUMN_MAP)
.assign(payment=raw["payment_type"].map(PAYMENT_TYPES))
.assign(pickup_zone=raw["pulocationid"].map(loc["zone"]))
.assign(dropoff_zone=raw["dolocationid"].map(loc["zone"]))
.assign(pickup_borough=raw["pulocationid"].map(loc["borough"]))
.assign(dropoff_borough=raw["dolocationid"].map(loc["borough"]))
.loc[lambda x: x["dropoff_borough"] != "EWR"]
.loc[lambda x: x.eval("dropoff - pickup").dt.seconds < MAX_TRIP_DURATION]
.loc[lambda x: (x["fare"] > 0) & (x["fare"] < 200)]
.loc[lambda x: (x["tip"] / x["fare"]) < 1]
)
clean.to_csv("taxis.csv", index=False)