forked from u-boot/u-boot
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcore.c
907 lines (731 loc) · 24.4 KB
/
core.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
// SPDX-License-Identifier: GPL-2.0+
/*
* Tests for the core driver model code
*
* Copyright (c) 2013 Google, Inc
*/
#include <common.h>
#include <errno.h>
#include <dm.h>
#include <fdtdec.h>
#include <malloc.h>
#include <dm/device-internal.h>
#include <dm/root.h>
#include <dm/util.h>
#include <dm/test.h>
#include <dm/uclass-internal.h>
#include <test/ut.h>
DECLARE_GLOBAL_DATA_PTR;
enum {
TEST_INTVAL1 = 0,
TEST_INTVAL2 = 3,
TEST_INTVAL3 = 6,
TEST_INTVAL_MANUAL = 101112,
TEST_INTVAL_PRE_RELOC = 7,
};
static const struct dm_test_pdata test_pdata[] = {
{ .ping_add = TEST_INTVAL1, },
{ .ping_add = TEST_INTVAL2, },
{ .ping_add = TEST_INTVAL3, },
};
static const struct dm_test_pdata test_pdata_manual = {
.ping_add = TEST_INTVAL_MANUAL,
};
static const struct dm_test_pdata test_pdata_pre_reloc = {
.ping_add = TEST_INTVAL_PRE_RELOC,
};
U_BOOT_DEVICE(dm_test_info1) = {
.name = "test_drv",
.platdata = &test_pdata[0],
};
U_BOOT_DEVICE(dm_test_info2) = {
.name = "test_drv",
.platdata = &test_pdata[1],
};
U_BOOT_DEVICE(dm_test_info3) = {
.name = "test_drv",
.platdata = &test_pdata[2],
};
static struct driver_info driver_info_manual = {
.name = "test_manual_drv",
.platdata = &test_pdata_manual,
};
static struct driver_info driver_info_pre_reloc = {
.name = "test_pre_reloc_drv",
.platdata = &test_pdata_pre_reloc,
};
static struct driver_info driver_info_act_dma = {
.name = "test_act_dma_drv",
};
void dm_leak_check_start(struct unit_test_state *uts)
{
uts->start = mallinfo();
if (!uts->start.uordblks)
puts("Warning: Please add '#define DEBUG' to the top of common/dlmalloc.c\n");
}
int dm_leak_check_end(struct unit_test_state *uts)
{
struct mallinfo end;
int id, diff;
/* Don't delete the root class, since we started with that */
for (id = UCLASS_ROOT + 1; id < UCLASS_COUNT; id++) {
struct uclass *uc;
uc = uclass_find(id);
if (!uc)
continue;
ut_assertok(uclass_destroy(uc));
}
end = mallinfo();
diff = end.uordblks - uts->start.uordblks;
if (diff > 0)
printf("Leak: lost %#xd bytes\n", diff);
else if (diff < 0)
printf("Leak: gained %#xd bytes\n", -diff);
ut_asserteq(uts->start.uordblks, end.uordblks);
return 0;
}
/* Test that binding with platdata occurs correctly */
static int dm_test_autobind(struct unit_test_state *uts)
{
struct dm_test_state *dms = uts->priv;
struct udevice *dev;
/*
* We should have a single class (UCLASS_ROOT) and a single root
* device with no children.
*/
ut_assert(dms->root);
ut_asserteq(1, list_count_items(&gd->uclass_root));
ut_asserteq(0, list_count_items(&gd->dm_root->child_head));
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
ut_assertok(dm_scan_platdata(false));
/* We should have our test class now at least, plus more children */
ut_assert(1 < list_count_items(&gd->uclass_root));
ut_assert(0 < list_count_items(&gd->dm_root->child_head));
/* Our 3 dm_test_infox children should be bound to the test uclass */
ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
/* No devices should be probed */
list_for_each_entry(dev, &gd->dm_root->child_head, sibling_node)
ut_assert(!(dev->flags & DM_FLAG_ACTIVATED));
/* Our test driver should have been bound 3 times */
ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == 3);
return 0;
}
DM_TEST(dm_test_autobind, 0);
/* Test that binding with uclass platdata allocation occurs correctly */
static int dm_test_autobind_uclass_pdata_alloc(struct unit_test_state *uts)
{
struct dm_test_perdev_uc_pdata *uc_pdata;
struct udevice *dev;
struct uclass *uc;
ut_assertok(uclass_get(UCLASS_TEST, &uc));
ut_assert(uc);
/**
* Test if test uclass driver requires allocation for the uclass
* platform data and then check the dev->uclass_platdata pointer.
*/
ut_assert(uc->uc_drv->per_device_platdata_auto_alloc_size);
for (uclass_find_first_device(UCLASS_TEST, &dev);
dev;
uclass_find_next_device(&dev)) {
ut_assert(dev);
uc_pdata = dev_get_uclass_platdata(dev);
ut_assert(uc_pdata);
}
return 0;
}
DM_TEST(dm_test_autobind_uclass_pdata_alloc, DM_TESTF_SCAN_PDATA);
/* Test that binding with uclass platdata setting occurs correctly */
static int dm_test_autobind_uclass_pdata_valid(struct unit_test_state *uts)
{
struct dm_test_perdev_uc_pdata *uc_pdata;
struct udevice *dev;
/**
* In the test_postbind() method of test uclass driver, the uclass
* platform data should be set to three test int values - test it.
*/
for (uclass_find_first_device(UCLASS_TEST, &dev);
dev;
uclass_find_next_device(&dev)) {
ut_assert(dev);
uc_pdata = dev_get_uclass_platdata(dev);
ut_assert(uc_pdata);
ut_assert(uc_pdata->intval1 == TEST_UC_PDATA_INTVAL1);
ut_assert(uc_pdata->intval2 == TEST_UC_PDATA_INTVAL2);
ut_assert(uc_pdata->intval3 == TEST_UC_PDATA_INTVAL3);
}
return 0;
}
DM_TEST(dm_test_autobind_uclass_pdata_valid, DM_TESTF_SCAN_PDATA);
/* Test that autoprobe finds all the expected devices */
static int dm_test_autoprobe(struct unit_test_state *uts)
{
struct dm_test_state *dms = uts->priv;
int expected_base_add;
struct udevice *dev;
struct uclass *uc;
int i;
ut_assertok(uclass_get(UCLASS_TEST, &uc));
ut_assert(uc);
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
/* The root device should not be activated until needed */
ut_assert(dms->root->flags & DM_FLAG_ACTIVATED);
/*
* We should be able to find the three test devices, and they should
* all be activated as they are used (lazy activation, required by
* U-Boot)
*/
for (i = 0; i < 3; i++) {
ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
ut_assert(dev);
ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED),
"Driver %d/%s already activated", i, dev->name);
/* This should activate it */
ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
ut_assert(dev);
ut_assert(dev->flags & DM_FLAG_ACTIVATED);
/* Activating a device should activate the root device */
if (!i)
ut_assert(dms->root->flags & DM_FLAG_ACTIVATED);
}
/*
* Our 3 dm_test_info children should be passed to pre_probe and
* post_probe
*/
ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
/* Also we can check the per-device data */
expected_base_add = 0;
for (i = 0; i < 3; i++) {
struct dm_test_uclass_perdev_priv *priv;
struct dm_test_pdata *pdata;
ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
ut_assert(dev);
priv = dev_get_uclass_priv(dev);
ut_assert(priv);
ut_asserteq(expected_base_add, priv->base_add);
pdata = dev->platdata;
expected_base_add += pdata->ping_add;
}
return 0;
}
DM_TEST(dm_test_autoprobe, DM_TESTF_SCAN_PDATA);
/* Check that we see the correct platdata in each device */
static int dm_test_platdata(struct unit_test_state *uts)
{
const struct dm_test_pdata *pdata;
struct udevice *dev;
int i;
for (i = 0; i < 3; i++) {
ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
ut_assert(dev);
pdata = dev->platdata;
ut_assert(pdata->ping_add == test_pdata[i].ping_add);
}
return 0;
}
DM_TEST(dm_test_platdata, DM_TESTF_SCAN_PDATA);
/* Test that we can bind, probe, remove, unbind a driver */
static int dm_test_lifecycle(struct unit_test_state *uts)
{
struct dm_test_state *dms = uts->priv;
int op_count[DM_TEST_OP_COUNT];
struct udevice *dev, *test_dev;
int pingret;
int ret;
memcpy(op_count, dm_testdrv_op_count, sizeof(op_count));
ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
&dev));
ut_assert(dev);
ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND]
== op_count[DM_TEST_OP_BIND] + 1);
ut_assert(!dev->priv);
/* Probe the device - it should fail allocating private data */
dms->force_fail_alloc = 1;
ret = device_probe(dev);
ut_assert(ret == -ENOMEM);
ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
== op_count[DM_TEST_OP_PROBE] + 1);
ut_assert(!dev->priv);
/* Try again without the alloc failure */
dms->force_fail_alloc = 0;
ut_assertok(device_probe(dev));
ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
== op_count[DM_TEST_OP_PROBE] + 2);
ut_assert(dev->priv);
/* This should be device 3 in the uclass */
ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
ut_assert(dev == test_dev);
/* Try ping */
ut_assertok(test_ping(dev, 100, &pingret));
ut_assert(pingret == 102);
/* Now remove device 3 */
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
ut_assertok(device_unbind(dev));
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
return 0;
}
DM_TEST(dm_test_lifecycle, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST);
/* Test that we can bind/unbind and the lists update correctly */
static int dm_test_ordering(struct unit_test_state *uts)
{
struct dm_test_state *dms = uts->priv;
struct udevice *dev, *dev_penultimate, *dev_last, *test_dev;
int pingret;
ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
&dev));
ut_assert(dev);
/* Bind two new devices (numbers 4 and 5) */
ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
&dev_penultimate));
ut_assert(dev_penultimate);
ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
&dev_last));
ut_assert(dev_last);
/* Now remove device 3 */
ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
ut_assertok(device_unbind(dev));
/* The device numbering should have shifted down one */
ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
ut_assert(dev_penultimate == test_dev);
ut_assertok(uclass_find_device(UCLASS_TEST, 4, &test_dev));
ut_assert(dev_last == test_dev);
/* Add back the original device 3, now in position 5 */
ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
&dev));
ut_assert(dev);
/* Try ping */
ut_assertok(test_ping(dev, 100, &pingret));
ut_assert(pingret == 102);
/* Remove 3 and 4 */
ut_assertok(device_remove(dev_penultimate, DM_REMOVE_NORMAL));
ut_assertok(device_unbind(dev_penultimate));
ut_assertok(device_remove(dev_last, DM_REMOVE_NORMAL));
ut_assertok(device_unbind(dev_last));
/* Our device should now be in position 3 */
ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
ut_assert(dev == test_dev);
/* Now remove device 3 */
ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
ut_assertok(device_unbind(dev));
return 0;
}
DM_TEST(dm_test_ordering, DM_TESTF_SCAN_PDATA);
/* Check that we can perform operations on a device (do a ping) */
int dm_check_operations(struct unit_test_state *uts, struct udevice *dev,
uint32_t base, struct dm_test_priv *priv)
{
int expected;
int pingret;
/* Getting the child device should allocate platdata / priv */
ut_assertok(testfdt_ping(dev, 10, &pingret));
ut_assert(dev->priv);
ut_assert(dev->platdata);
expected = 10 + base;
ut_asserteq(expected, pingret);
/* Do another ping */
ut_assertok(testfdt_ping(dev, 20, &pingret));
expected = 20 + base;
ut_asserteq(expected, pingret);
/* Now check the ping_total */
priv = dev->priv;
ut_asserteq(DM_TEST_START_TOTAL + 10 + 20 + base * 2,
priv->ping_total);
return 0;
}
/* Check that we can perform operations on devices */
static int dm_test_operations(struct unit_test_state *uts)
{
struct udevice *dev;
int i;
/*
* Now check that the ping adds are what we expect. This is using the
* ping-add property in each node.
*/
for (i = 0; i < ARRAY_SIZE(test_pdata); i++) {
uint32_t base;
ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
/*
* Get the 'reg' property, which tells us what the ping add
* should be. We don't use the platdata because we want
* to test the code that sets that up (testfdt_drv_probe()).
*/
base = test_pdata[i].ping_add;
debug("dev=%d, base=%d\n", i, base);
ut_assert(!dm_check_operations(uts, dev, base, dev->priv));
}
return 0;
}
DM_TEST(dm_test_operations, DM_TESTF_SCAN_PDATA);
/* Remove all drivers and check that things work */
static int dm_test_remove(struct unit_test_state *uts)
{
struct udevice *dev;
int i;
for (i = 0; i < 3; i++) {
ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
ut_assert(dev);
ut_assertf(dev->flags & DM_FLAG_ACTIVATED,
"Driver %d/%s not activated", i, dev->name);
ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED),
"Driver %d/%s should have deactivated", i,
dev->name);
ut_assert(!dev->priv);
}
return 0;
}
DM_TEST(dm_test_remove, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST);
/* Remove and recreate everything, check for memory leaks */
static int dm_test_leak(struct unit_test_state *uts)
{
int i;
for (i = 0; i < 2; i++) {
struct udevice *dev;
int ret;
int id;
dm_leak_check_start(uts);
ut_assertok(dm_scan_platdata(false));
ut_assertok(dm_scan_fdt(gd->fdt_blob, false));
/* Scanning the uclass is enough to probe all the devices */
for (id = UCLASS_ROOT; id < UCLASS_COUNT; id++) {
for (ret = uclass_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_next_device(&dev))
;
ut_assertok(ret);
}
ut_assertok(dm_leak_check_end(uts));
}
return 0;
}
DM_TEST(dm_test_leak, 0);
/* Test uclass init/destroy methods */
static int dm_test_uclass(struct unit_test_state *uts)
{
struct uclass *uc;
ut_assertok(uclass_get(UCLASS_TEST, &uc));
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
ut_assert(uc->priv);
ut_assertok(uclass_destroy(uc));
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
return 0;
}
DM_TEST(dm_test_uclass, 0);
/**
* create_children() - Create children of a parent node
*
* @dms: Test system state
* @parent: Parent device
* @count: Number of children to create
* @key: Key value to put in first child. Subsequence children
* receive an incrementing value
* @child: If not NULL, then the child device pointers are written into
* this array.
* @return 0 if OK, -ve on error
*/
static int create_children(struct unit_test_state *uts, struct udevice *parent,
int count, int key, struct udevice *child[])
{
struct udevice *dev;
int i;
for (i = 0; i < count; i++) {
struct dm_test_pdata *pdata;
ut_assertok(device_bind_by_name(parent, false,
&driver_info_manual, &dev));
pdata = calloc(1, sizeof(*pdata));
pdata->ping_add = key + i;
dev->platdata = pdata;
if (child)
child[i] = dev;
}
return 0;
}
#define NODE_COUNT 10
static int dm_test_children(struct unit_test_state *uts)
{
struct dm_test_state *dms = uts->priv;
struct udevice *top[NODE_COUNT];
struct udevice *child[NODE_COUNT];
struct udevice *grandchild[NODE_COUNT];
struct udevice *dev;
int total;
int ret;
int i;
/* We don't care about the numbering for this test */
dms->skip_post_probe = 1;
ut_assert(NODE_COUNT > 5);
/* First create 10 top-level children */
ut_assertok(create_children(uts, dms->root, NODE_COUNT, 0, top));
/* Now a few have their own children */
ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
/* And grandchildren */
for (i = 0; i < NODE_COUNT; i++)
ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
i == 2 ? grandchild : NULL));
/* Check total number of devices */
total = NODE_COUNT * (3 + NODE_COUNT);
ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
/* Try probing one of the grandchildren */
ut_assertok(uclass_get_device(UCLASS_TEST,
NODE_COUNT * 3 + 2 * NODE_COUNT, &dev));
ut_asserteq_ptr(grandchild[0], dev);
/*
* This should have probed the child and top node also, for a total
* of 3 nodes.
*/
ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
/* Probe the other grandchildren */
for (i = 1; i < NODE_COUNT; i++)
ut_assertok(device_probe(grandchild[i]));
ut_asserteq(2 + NODE_COUNT, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
/* Probe everything */
for (ret = uclass_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_next_device(&dev))
;
ut_assertok(ret);
ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
/* Remove a top-level child and check that the children are removed */
ut_assertok(device_remove(top[2], DM_REMOVE_NORMAL));
ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
dm_testdrv_op_count[DM_TEST_OP_REMOVE] = 0;
/* Try one with grandchildren */
ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
ut_asserteq_ptr(dev, top[5]);
ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
/* Try the same with unbind */
ut_assertok(device_unbind(top[2]));
ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
dm_testdrv_op_count[DM_TEST_OP_UNBIND] = 0;
/* Try one with grandchildren */
ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
ut_asserteq_ptr(dev, top[6]);
ut_assertok(device_unbind(top[5]));
ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
return 0;
}
DM_TEST(dm_test_children, 0);
/* Test that pre-relocation devices work as expected */
static int dm_test_pre_reloc(struct unit_test_state *uts)
{
struct dm_test_state *dms = uts->priv;
struct udevice *dev;
/* The normal driver should refuse to bind before relocation */
ut_asserteq(-EPERM, device_bind_by_name(dms->root, true,
&driver_info_manual, &dev));
/* But this one is marked pre-reloc */
ut_assertok(device_bind_by_name(dms->root, true,
&driver_info_pre_reloc, &dev));
return 0;
}
DM_TEST(dm_test_pre_reloc, 0);
/*
* Test that removal of devices, either via the "normal" device_remove()
* API or via the device driver selective flag works as expected
*/
static int dm_test_remove_active_dma(struct unit_test_state *uts)
{
struct dm_test_state *dms = uts->priv;
struct udevice *dev;
ut_assertok(device_bind_by_name(dms->root, false, &driver_info_act_dma,
&dev));
ut_assert(dev);
/* Probe the device */
ut_assertok(device_probe(dev));
/* Test if device is active right now */
ut_asserteq(true, device_active(dev));
/* Remove the device via selective remove flag */
dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
/* Test if device is inactive right now */
ut_asserteq(false, device_active(dev));
/* Probe the device again */
ut_assertok(device_probe(dev));
/* Test if device is active right now */
ut_asserteq(true, device_active(dev));
/* Remove the device via "normal" remove API */
ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
/* Test if device is inactive right now */
ut_asserteq(false, device_active(dev));
/*
* Test if a device without the active DMA flags is not removed upon
* the active DMA remove call
*/
ut_assertok(device_unbind(dev));
ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
&dev));
ut_assert(dev);
/* Probe the device */
ut_assertok(device_probe(dev));
/* Test if device is active right now */
ut_asserteq(true, device_active(dev));
/* Remove the device via selective remove flag */
dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
/* Test if device is still active right now */
ut_asserteq(true, device_active(dev));
return 0;
}
DM_TEST(dm_test_remove_active_dma, 0);
static int dm_test_uclass_before_ready(struct unit_test_state *uts)
{
struct uclass *uc;
ut_assertok(uclass_get(UCLASS_TEST, &uc));
gd->dm_root = NULL;
gd->dm_root_f = NULL;
memset(&gd->uclass_root, '\0', sizeof(gd->uclass_root));
ut_asserteq_ptr(NULL, uclass_find(UCLASS_TEST));
return 0;
}
DM_TEST(dm_test_uclass_before_ready, 0);
static int dm_test_uclass_devices_find(struct unit_test_state *uts)
{
struct udevice *dev;
int ret;
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_find_next_device(&dev)) {
ut_assert(!ret);
ut_assert(dev);
}
ret = uclass_find_first_device(UCLASS_TEST_DUMMY, &dev);
ut_assert(ret == -ENODEV);
ut_assert(!dev);
return 0;
}
DM_TEST(dm_test_uclass_devices_find, DM_TESTF_SCAN_PDATA);
static int dm_test_uclass_devices_find_by_name(struct unit_test_state *uts)
{
struct udevice *finddev;
struct udevice *testdev;
int findret, ret;
/*
* For each test device found in fdt like: "a-test", "b-test", etc.,
* use its name and try to find it by uclass_find_device_by_name().
* Then, on success check if:
* - current 'testdev' name is equal to the returned 'finddev' name
* - current 'testdev' pointer is equal to the returned 'finddev'
*
* We assume that, each uclass's device name is unique, so if not, then
* this will fail on checking condition: testdev == finddev, since the
* uclass_find_device_by_name(), returns the first device by given name.
*/
for (ret = uclass_find_first_device(UCLASS_TEST_FDT, &testdev);
testdev;
ret = uclass_find_next_device(&testdev)) {
ut_assertok(ret);
ut_assert(testdev);
findret = uclass_find_device_by_name(UCLASS_TEST_FDT,
testdev->name,
&finddev);
ut_assertok(findret);
ut_assert(testdev);
ut_asserteq_str(testdev->name, finddev->name);
ut_asserteq_ptr(testdev, finddev);
}
return 0;
}
DM_TEST(dm_test_uclass_devices_find_by_name, DM_TESTF_SCAN_FDT);
static int dm_test_uclass_devices_get(struct unit_test_state *uts)
{
struct udevice *dev;
int ret;
for (ret = uclass_first_device(UCLASS_TEST, &dev);
dev;
ret = uclass_next_device(&dev)) {
ut_assert(!ret);
ut_assert(dev);
ut_assert(device_active(dev));
}
return 0;
}
DM_TEST(dm_test_uclass_devices_get, DM_TESTF_SCAN_PDATA);
static int dm_test_uclass_devices_get_by_name(struct unit_test_state *uts)
{
struct udevice *finddev;
struct udevice *testdev;
int ret, findret;
/*
* For each test device found in fdt like: "a-test", "b-test", etc.,
* use its name and try to get it by uclass_get_device_by_name().
* On success check if:
* - returned finddev' is active
* - current 'testdev' name is equal to the returned 'finddev' name
* - current 'testdev' pointer is equal to the returned 'finddev'
*
* We asserts that the 'testdev' is active on each loop entry, so we
* could be sure that the 'finddev' is activated too, but for sure
* we check it again.
*
* We assume that, each uclass's device name is unique, so if not, then
* this will fail on checking condition: testdev == finddev, since the
* uclass_get_device_by_name(), returns the first device by given name.
*/
for (ret = uclass_first_device(UCLASS_TEST_FDT, &testdev);
testdev;
ret = uclass_next_device(&testdev)) {
ut_assertok(ret);
ut_assert(testdev);
ut_assert(device_active(testdev));
findret = uclass_get_device_by_name(UCLASS_TEST_FDT,
testdev->name,
&finddev);
ut_assertok(findret);
ut_assert(finddev);
ut_assert(device_active(finddev));
ut_asserteq_str(testdev->name, finddev->name);
ut_asserteq_ptr(testdev, finddev);
}
return 0;
}
DM_TEST(dm_test_uclass_devices_get_by_name, DM_TESTF_SCAN_FDT);
static int dm_test_device_get_uclass_id(struct unit_test_state *uts)
{
struct udevice *dev;
ut_assertok(uclass_get_device(UCLASS_TEST, 0, &dev));
ut_asserteq(UCLASS_TEST, device_get_uclass_id(dev));
return 0;
}
DM_TEST(dm_test_device_get_uclass_id, DM_TESTF_SCAN_PDATA);
static int dm_test_uclass_names(struct unit_test_state *uts)
{
ut_asserteq_str("test", uclass_get_name(UCLASS_TEST));
ut_asserteq(UCLASS_TEST, uclass_get_by_name("test"));
return 0;
}
DM_TEST(dm_test_uclass_names, DM_TESTF_SCAN_PDATA);
static int dm_test_inactive_child(struct unit_test_state *uts)
{
struct dm_test_state *dms = uts->priv;
struct udevice *parent, *dev1, *dev2;
/* Skip the behaviour in test_post_probe() */
dms->skip_post_probe = 1;
ut_assertok(uclass_first_device_err(UCLASS_TEST, &parent));
/*
* Create a child but do not activate it. Calling the function again
* should return the same child.
*/
ut_asserteq(-ENODEV, device_find_first_inactive_child(parent,
UCLASS_TEST, &dev1));
ut_assertok(device_bind_ofnode(parent, DM_GET_DRIVER(test_drv),
"test_child", 0, ofnode_null(), &dev1));
ut_assertok(device_find_first_inactive_child(parent, UCLASS_TEST,
&dev2));
ut_asserteq_ptr(dev1, dev2);
ut_assertok(device_probe(dev1));
ut_asserteq(-ENODEV, device_find_first_inactive_child(parent,
UCLASS_TEST, &dev2));
return 0;
}
DM_TEST(dm_test_inactive_child, DM_TESTF_SCAN_PDATA);