forked from pybamm-team/PyBaMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
util.py
323 lines (271 loc) · 9.99 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
#
# Utility classes for PyBaMM
#
# The code in this file is adapted from Pints
# (see https://github.com/pints-team/pints)
#
import importlib
import numpy as np
import os
import timeit
import pathlib
import pickle
import pybamm
import numbers
import warnings
from collections import defaultdict
def root_dir():
""" return the root directory of the PyBaMM install directory """
return str(pathlib.Path(pybamm.__path__[0]).parent)
class FuzzyDict(dict):
def levenshtein_ratio(self, s, t):
"""
Calculates levenshtein distance between two strings s and t.
Uses the formula from
https://www.datacamp.com/community/tutorials/fuzzy-string-python
"""
# Initialize matrix of zeros
rows = len(s) + 1
cols = len(t) + 1
distance = np.zeros((rows, cols), dtype=int)
# Populate matrix of zeros with the indices of each character of both strings
for i in range(1, rows):
for k in range(1, cols):
distance[i][0] = i
distance[0][k] = k
# Iterate over the matrix to compute the cost of deletions, insertions and/or
# substitutions
for col in range(1, cols):
for row in range(1, rows):
if s[row - 1] == t[col - 1]:
# If the characters are the same in the two strings in a given
# position [i,j] then the cost is 0
cost = 0
else:
# In order to align the results with those of the Python Levenshtein
# package, the cost of a substitution is 2.
cost = 2
distance[row][col] = min(
distance[row - 1][col] + 1, # Cost of deletions
distance[row][col - 1] + 1, # Cost of insertions
distance[row - 1][col - 1] + cost, # Cost of substitutions
)
# Computation of the Levenshtein Distance Ratio
ratio = ((len(s) + len(t)) - distance[row][col]) / (len(s) + len(t))
return ratio
def get_best_matches(self, key):
"""Get best matches from keys"""
key = key.lower()
best_three = []
lowest_score = 0
for k in self.keys():
score = self.levenshtein_ratio(k.lower(), key)
# Start filling out the list
if len(best_three) < 3:
best_three.append((k, score))
# Sort once the list has three elements, using scores
if len(best_three) == 3:
best_three.sort(key=lambda x: x[1], reverse=True)
lowest_score = best_three[-1][1]
# Once list is full, start checking new entries
else:
if score > lowest_score:
# Replace last element with new entry
best_three[-1] = (k, score)
# Sort and update lowest score
best_three.sort(key=lambda x: x[1], reverse=True)
lowest_score = best_three[-1][1]
return [x[0] for x in best_three]
def __getitem__(self, key):
try:
return super().__getitem__(key)
except KeyError:
best_matches = self.get_best_matches(key)
raise KeyError(f"'{key}' not found. Best matches are {best_matches}")
def search(self, key, print_values=False):
"""
Search dictionary for keys containing 'key'. If print_values is True, then
both the keys and values will be printed. Otherwise just the values will
be printed. If no results are found, the best matches are printed.
"""
key = key.lower()
# Sort the keys so results are stored in alphabetical order
keys = list(self.keys())
keys.sort()
results = {}
# Check if any of the dict keys contain the key we are searching for
for k in keys:
if key in k.lower():
results[k] = self[k]
if results == {}:
# If no results, return best matches
best_matches = self.get_best_matches(key)
print(
f"No results for search using '{key}'. Best matches are {best_matches}"
)
elif print_values:
# Else print results, including dict items
print("\n".join("{}\t{}".format(k, v) for k, v in results.items()))
else:
# Just print keys
print("\n".join("{}".format(k) for k in results.keys()))
class Timer(object):
"""
Provides accurate timing.
Example
-------
timer = pybamm.Timer()
print(timer.time())
"""
def __init__(self):
self._start = timeit.default_timer()
def reset(self):
"""
Resets this timer's start time.
"""
self._start = timeit.default_timer()
def time(self):
"""
Returns the time (float, in seconds) since this timer was created,
or since meth:`reset()` was last called.
"""
return TimerTime(timeit.default_timer() - self._start)
class TimerTime:
def __init__(self, value):
"""A string whose value prints in human-readable form"""
self.value = value
def __str__(self):
"""
Formats a (non-integer) number of seconds, returns a string like
"5 weeks, 3 days, 1 hour, 4 minutes, 9 seconds", or "0.0019 seconds".
"""
time = self.value
if time < 1e-6:
return "{:.3f} ns".format(time * 1e9)
if time < 1e-3:
return "{:.3f} us".format(time * 1e6)
if time < 1:
return "{:.3f} ms".format(time * 1e3)
elif time < 60:
return "{:.3f} s".format(time)
output = []
time = int(round(time))
units = [(604800, "week"), (86400, "day"), (3600, "hour"), (60, "minute")]
for k, name in units:
f = time // k
if f > 0 or output:
output.append(str(f) + " " + (name if f == 1 else name + "s"))
time -= f * k
output.append("1 second" if time == 1 else str(time) + " seconds")
return ", ".join(output)
def __add__(self, other):
if isinstance(other, numbers.Number):
return TimerTime(self.value + other)
else:
return TimerTime(self.value + other.value)
def __radd__(self, other):
return self.__add__(other)
def __sub__(self, other):
if isinstance(other, numbers.Number):
return TimerTime(self.value - other)
else:
return TimerTime(self.value - other.value)
def __rsub__(self, other):
if isinstance(other, numbers.Number):
return TimerTime(other - self.value)
def __mul__(self, other):
if isinstance(other, numbers.Number):
return TimerTime(self.value * other)
else:
return TimerTime(self.value * other.value)
def __rmul__(self, other):
return self.__mul__(other)
def __truediv__(self, other):
if isinstance(other, numbers.Number):
return TimerTime(self.value / other)
else:
return TimerTime(self.value / other.value)
def __rtruediv__(self, other):
if isinstance(other, numbers.Number):
return TimerTime(other / self.value)
def __eq__(self, other):
return self.value == other.value
def load_function(filename):
"""
Load a python function from an absolute or relative path using `importlib`.
Example - pybamm.load_function("pybamm/input/example.py")
Arguments
---------
filename : str
The path of the file containing the function.
Returns
-------
function
The python function loaded from the file.
"""
# Remove `.py` from the file name
if filename.endswith(".py"):
filename = filename.replace(".py", "")
# Replace `lead-acid` with `lead_acid`
if "lead-acid" in filename:
warnings.simplefilter("always", DeprecationWarning)
warnings.warn(
"lead-acid is deprecated, use lead_acid instead", DeprecationWarning
)
filename = filename.replace("lead-acid", "lead_acid")
# Replace `lithium-ion` with `lithium_ion`
if "lithium-ion" in filename:
warnings.simplefilter("always", DeprecationWarning)
warnings.warn(
"lithium-ion is deprecated, use lithium_ion instead", DeprecationWarning
)
filename = filename.replace("lithium-ion", "lithium_ion")
# Assign path to _ and filename to tail
_, tail = os.path.split(filename)
# Strip absolute path to pybamm/input/exapmle.py
if "pybamm" in filename:
root_path = filename[filename.rfind("pybamm") :]
else:
root_path = filename
path = root_path.replace("/", ".")
path = path.replace("\\", ".")
module_object = importlib.import_module(path)
return getattr(module_object, tail)
def rmse(x, y):
"""
Calculate the root-mean-square-error between two vectors x and y, ignoring NaNs
"""
# Check lengths
if len(x) != len(y):
raise ValueError("Vectors must have the same length")
return np.sqrt(np.nanmean((x - y) ** 2))
def get_infinite_nested_dict():
"""
Return a dictionary that allows infinite nesting without having to define level by
level.
See:
https://stackoverflow.com/questions/651794/whats-the-best-way-to-initialize-a-dict-of-dicts-in-python/652226#652226
Example
-------
>>> import pybamm
>>> d = pybamm.get_infinite_nested_dict()
>>> d["a"] = 1
>>> d["a"]
1
>>> d["b"]["c"]["d"] = 2
>>> d["b"]["c"] == {"d": 2}
True
"""
return defaultdict(get_infinite_nested_dict)
def load(filename):
"""Load a saved object"""
with open(filename, "rb") as f:
obj = pickle.load(f)
return obj
def get_parameters_filepath(path):
"""Returns path if it exists in current working dir,
otherwise get it from package dir"""
if os.path.exists(path):
return path
else:
return os.path.join(pybamm.__path__[0], path)