# SSH
git clone [email protected]:TarzanZhao/gaussian-splatting.git --recursive
Our default, provided install method is based on Conda package and environment management:
conda env create --file environment.yml
conda activate gaussian_splatting
If you want to use other name for this conda environment, you should change the name:
field in the environment.yml
Then, we need to compile two dependent cuda repo diff-gaussian-rasterization
and simple-knn
. diff-gaussian-rasterization
contains render cuda kernels, which will be continuously modified by us. Therefore, let us first install it in development mode.
pip install -e submodules/diff-gaussian-rasterization
pip install submodules/simple-knn
# 1 GPU
python train.py \
-s dataset path \
--iterations 7000 \
--log_interval 50 \
--log_folder experiments/test_1gpu \
--model_path experiments/test_1gpu \
--benchmark_stats
# 4 GPU
torchrun --standalone --nnodes=1 --nproc-per-node=4 train.py \
-s dataset path \
--iterations 7000 \
--log_interval 50 \
--log_folder experiments/test_4gpu \
--model_path experiments/test_4gpu \
--render_distribution_mode "2" \
--redistribute_gaussians_mode "1" \
--loss_distribution_mode "general" \
--benchmark_stats
In hz3496's account in greene, it is /scratch/hz3496/3dgs_data/tandt_db/tandt/train