forked from mbechtel2/DeepPicar-v2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_shuffled.py
137 lines (109 loc) · 3.64 KB
/
data_shuffled.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#!/usr/bin/env python
from __future__ import division
import random
import os
import sys
from collections import OrderedDict
import cv2
import params
import preprocess
import local_common as cm
################ parameters ###############
data_dir = params.data_dir
epochs = params.epochs
img_height = params.img_height
img_width = params.img_width
img_channels = params.img_channels
purposes = ['train', 'val']
imgs = OrderedDict()
wheels = OrderedDict()
for purpose in purposes:
imgs[purpose] = []
wheels[purpose] = []
categories = ['center', 'curve']
imgs_cat = OrderedDict()
wheels_cat = OrderedDict()
for p in purposes:
imgs_cat[p] = OrderedDict()
wheels_cat[p] = OrderedDict()
for c in categories:
imgs_cat[p][c] = []
wheels_cat[p][c] = []
# load all preprocessed training images into memory
def load_imgs():
global imgs
global wheels
for p in purposes:
for epoch_id in epochs[p]:
print 'processing and loading "{}" epoch {} into memory, current num of imgs is {}...'.format(
p, epoch_id, len(imgs[p]))
# vid_path = cm.jn(data_dir, 'epoch{:0>2}_front.mkv'.format(epoch_id))
vid_path = cm.jn(data_dir, 'out-video-{}.avi'.format(epoch_id))
print "DBG:", vid_path
assert os.path.isfile(vid_path)
frame_count = cm.frame_count(vid_path)
print "DBG:", frame_count
cap = cv2.VideoCapture(vid_path)
# csv_path = cm.jn(data_dir, 'epoch{:0>2}_steering.csv'.format(epoch_id))
csv_path = cm.jn(data_dir, 'out-key-{}.csv'.format(epoch_id))
assert os.path.isfile(csv_path)
print "DBG:", csv_path
rows = cm.fetch_csv_data(csv_path)
print len(rows), frame_count
assert frame_count == len(rows)
yy = [[float(row['wheel'])] for row in rows]
while True:
ret, img = cap.read()
if not ret:
break
img = preprocess.preprocess(img)
imgs[p].append(img)
wheels[p].extend(yy)
assert len(imgs[p]) == len(wheels[p])
cap.release()
def load_batch(purpose):
p = purpose
assert len(imgs[p]) == len(wheels[p])
n = len(imgs[p])
assert n > 0
ii = random.sample(xrange(0, n), params.batch_size)
assert len(ii) == params.batch_size
xx, yy = [], []
for i in ii:
xx.append(imgs[p][i])
yy.append(wheels[p][i])
return xx, yy
def categorize_imgs():
global imgs
global wheels
global imgs_cat
global wheels_cat
for p in purposes:
n = len(imgs[p])
for i in range(n):
# print 'wheels[{}][{}]:{}'.format(p, i, wheels[p][i])
if abs(wheels[p][i][0]) < 0.001:
imgs_cat[p]['center'].append(imgs[p][i])
wheels_cat[p]['center'].append(wheels[p][i])
else:
imgs_cat[p]['curve'].append(imgs[p][i])
wheels_cat[p]['curve'].append(wheels[p][i])
print '---< {} >---'.format(p)
for c in categories:
print '# {} imgs: {}'.format(c, len(imgs_cat[p][c]))
def load_batch_category_normal(purpose):
p = purpose
xx, yy = [], []
nc = len(categories)
for c in categories:
n = len(imgs_cat[p][c])
assert n > 0
ii = random.sample(xrange(0, n), int(params.batch_size/nc))
assert len(ii) == int(params.batch_size/nc)
for i in ii:
xx.append(imgs_cat[p][c][i])
yy.append(wheels_cat[p][c][i])
return xx, yy
if __name__ == '__main__':
load_imgs()
load_batch()