This repository has been archived by the owner on Nov 8, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 51
/
module_bl_gwdo.F
763 lines (763 loc) · 34.3 KB
/
module_bl_gwdo.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
!WRF:model_layer:physics
!
!
!
!
module module_bl_gwdo
contains
!-------------------------------------------------------------------------------
subroutine gwdo(u3d,v3d,t3d,qv3d,p3d,p3di,pi3d,z, &
rublten,rvblten, &
dtaux3d,dtauy3d,dusfcg,dvsfcg, &
var2d,oc12d,oa2d1,oa2d2,oa2d3,oa2d4,ol2d1,ol2d2,ol2d3,ol2d4, &
znu,znw,p_top, &
cp,g,rd,rv,ep1,pi, &
dt,dx,kpbl2d,itimestep, &
ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte)
!-------------------------------------------------------------------------------
implicit none
!-------------------------------------------------------------------------------
!
!-- u3d 3d u-velocity interpolated to theta points (m/s)
!-- v3d 3d v-velocity interpolated to theta points (m/s)
!-- t3d temperature (k)
!-- qv3d 3d water vapor mixing ratio (kg/kg)
!-- p3d 3d pressure (pa)
!-- p3di 3d pressure (pa) at interface level
!-- pi3d 3d exner function (dimensionless)
!-- rublten u tendency due to pbl parameterization (m/s/s)
!-- rvblten v tendency due to pbl parameterization (m/s/s)
!-- znu eta values (sigma values)
!-- cp heat capacity at constant pressure for dry air (j/kg/k)
!-- g acceleration due to gravity (m/s^2)
!-- rd gas constant for dry air (j/kg/k)
!-- z height above sea level (m)
!-- rv gas constant for water vapor (j/kg/k)
!-- dt time step (s)
!-- dx model grid interval (m)
!-- ep1 constant for virtual temperature (r_v/r_d - 1) (dimensionless)
!-- ids start index for i in domain
!-- ide end index for i in domain
!-- jds start index for j in domain
!-- jde end index for j in domain
!-- kds start index for k in domain
!-- kde end index for k in domain
!-- ims start index for i in memory
!-- ime end index for i in memory
!-- jms start index for j in memory
!-- jme end index for j in memory
!-- kms start index for k in memory
!-- kme end index for k in memory
!-- its start index for i in tile
!-- ite end index for i in tile
!-- jts start index for j in tile
!-- jte end index for j in tile
!-- kts start index for k in tile
!-- kte end index for k in tile
!
!-------------------------------------------------------------------------------
integer, intent(in ) :: ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte
integer, intent(in ) :: itimestep
!
real, intent(in ) :: dt,dx,cp,g,rd,rv,ep1,pi
!
real, dimension( ims:ime, kms:kme, jms:jme ) , &
intent(in ) :: qv3d, &
p3d, &
pi3d, &
t3d, &
z
real, dimension( ims:ime, kms:kme, jms:jme ) , &
intent(in ) :: p3di
!
real, dimension( ims:ime, kms:kme, jms:jme ) , &
intent(inout) :: rublten, &
rvblten
real, dimension( ims:ime, kms:kme, jms:jme ) , &
intent(inout) :: dtaux3d, &
dtauy3d
!
real, dimension( ims:ime, kms:kme, jms:jme ) , &
intent(in ) :: u3d, &
v3d
!
integer, dimension( ims:ime, jms:jme ) , &
intent(in ) :: kpbl2d
real, dimension( ims:ime, jms:jme ) , &
intent(inout ) :: dusfcg, &
dvsfcg
!
real, dimension( ims:ime, jms:jme ) , &
intent(in ) :: var2d, &
oc12d, &
oa2d1,oa2d2,oa2d3,oa2d4, &
ol2d1,ol2d2,ol2d3,ol2d4
!
real, dimension( kms:kme ) , &
optional , &
intent(in ) :: znu, &
znw
!
real, optional, intent(in ) :: p_top
!
!local
!
real, dimension( its:ite, kts:kte ) :: delprsi, &
pdh
real, dimension( its:ite, kts:kte+1 ) :: pdhi
real, dimension( its:ite, 4 ) :: oa4, &
ol4
integer :: i,j,k,kdt,kpblmax
!
do k = kts,kte
if(znu(k).gt.0.6) kpblmax = k + 1
enddo
!
do j = jts,jte
do k = kts,kte+1
do i = its,ite
if(k.le.kte)pdh(i,k) = p3d(i,k,j)
pdhi(i,k) = p3di(i,k,j)
enddo
enddo
!
do k = kts,kte
do i = its,ite
delprsi(i,k) = pdhi(i,k)-pdhi(i,k+1)
enddo
enddo
do i = its,ite
oa4(i,1) = oa2d1(i,j)
oa4(i,2) = oa2d2(i,j)
oa4(i,3) = oa2d3(i,j)
oa4(i,4) = oa2d4(i,j)
ol4(i,1) = ol2d1(i,j)
ol4(i,2) = ol2d2(i,j)
ol4(i,3) = ol2d3(i,j)
ol4(i,4) = ol2d4(i,j)
enddo
call gwdo2d(dudt=rublten(ims,kms,j),dvdt=rvblten(ims,kms,j) &
,dtaux2d=dtaux3d(ims,kms,j),dtauy2d=dtauy3d(ims,kms,j) &
,u1=u3d(ims,kms,j),v1=v3d(ims,kms,j) &
,t1=t3d(ims,kms,j),q1=qv3d(ims,kms,j) &
,del=delprsi(its,kts) &
,prsi=pdhi(its,kts) &
,prsl=pdh(its,kts),prslk=pi3d(ims,kms,j) &
,zl=z(ims,kms,j),rcl=1.0 &
,kpblmax=kpblmax &
,dusfc=dusfcg(ims,j),dvsfc=dvsfcg(ims,j) &
,var=var2d(ims,j),oc1=oc12d(ims,j) &
,oa4=oa4,ol4=ol4 &
,g=g,cp=cp,rd=rd,rv=rv,fv=ep1,pi=pi &
,dxmeter=dx,deltim=dt &
,kpbl=kpbl2d(ims,j),kdt=itimestep,lat=j &
,ids=ids,ide=ide, jds=jds,jde=jde, kds=kds,kde=kde &
,ims=ims,ime=ime, jms=jms,jme=jme, kms=kms,kme=kme &
,its=its,ite=ite, jts=jts,jte=jte, kts=kts,kte=kte )
enddo
!
end subroutine gwdo
!-------------------------------------------------------------------------------
!
!-------------------------------------------------------------------------------
subroutine gwdo2d(dudt,dvdt,dtaux2d,dtauy2d, &
u1,v1,t1,q1, &
del, &
prsi,prsl,prslk,zl,rcl,kpblmax, &
var,oc1,oa4,ol4,dusfc,dvsfc, &
g,cp,rd,rv,fv,pi,dxmeter,deltim,kpbl,kdt,lat, &
ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte)
!-------------------------------------------------------------------------------
!
! this code handles the time tendencies of u v due to the effect of mountain
! induced gravity wave drag from sub-grid scale orography. this routine
! not only treats the traditional upper-level wave breaking due to mountain
! variance (alpert 1988), but also the enhanced lower-tropospheric wave
! breaking due to mountain convexity and asymmetry (kim and arakawa 1995).
! thus, in addition to the terrain height data in a model grid gox,
! additional 10-2d topographic statistics files are needed, including
! orographic standard deviation (var), convexity (oc1), asymmetry (oa4)
! and ol (ol4). these data sets are prepared based on the 30 sec usgs orography
! hong (1999). the current scheme was implmented as in hong et al.(2008)
!
! coded by song-you hong and young-joon kim and implemented by song-you hong
!
! program history log:
! 2014-10-01 Hyun-Joo Choi (from KIAPS) flow-blocking drag of kim and doyle
! with blocked height by dividing streamline theory
!
! references:
! hong et al. (2008), wea. and forecasting
! kim and doyle (2005), Q. J. R. Meteor. Soc.
! kim and arakawa (1995), j. atmos. sci.
! alpet et al. (1988), NWP conference.
! hong (1999), NCEP office note 424.
!
! notice : comparible or lower resolution orography files than model resolution
! are desirable in preprocess (wps) to prevent weakening of the drag
!-------------------------------------------------------------------------------
!
! input
! dudt (ims:ime,kms:kme) non-lin tendency for u wind component
! dvdt (ims:ime,kms:kme) non-lin tendency for v wind component
! u1(ims:ime,kms:kme) zonal wind / sqrt(rcl) m/sec at t0-dt
! v1(ims:ime,kms:kme) meridional wind / sqrt(rcl) m/sec at t0-dt
! t1(ims:ime,kms:kme) temperature deg k at t0-dt
! q1(ims:ime,kms:kme) specific humidity at t0-dt
!
! rcl a scaling factor = reciprocal of square of cos(lat)
! for gmp. rcl=1 if u1 and v1 are wind components.
! deltim time step secs
! del(kts:kte) positive increment of pressure across layer (pa)
!
! output
! dudt, dvdt wind tendency due to gwdo
!
!-------------------------------------------------------------------------------
implicit none
!-------------------------------------------------------------------------------
integer :: kdt,lat,latd,lond,kpblmax, &
ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte
!
real :: g,rd,rv,fv,cp,pi,dxmeter,deltim,rcl
real :: dudt(ims:ime,kms:kme),dvdt(ims:ime,kms:kme), &
dtaux2d(ims:ime,kms:kme),dtauy2d(ims:ime,kms:kme), &
u1(ims:ime,kms:kme),v1(ims:ime,kms:kme), &
t1(ims:ime,kms:kme),q1(ims:ime,kms:kme), &
zl(ims:ime,kms:kme),prsl(its:ite,kts:kte), &
prslk(ims:ime,kms:kme)
real :: prsi(its:ite,kts:kte+1),del(its:ite,kts:kte)
real :: oa4(its:ite,4),ol4(its:ite,4)
!
integer :: kpbl(ims:ime)
real :: var(ims:ime),oc1(ims:ime), &
dusfc(ims:ime),dvsfc(ims:ime)
!
! critical richardson number for wave breaking : ! larger drag with larger value
!
real,parameter :: ric = 0.25
!
real,parameter :: dw2min = 1.
real,parameter :: rimin = -100.
real,parameter :: bnv2min = 1.0e-5
real,parameter :: efmin = 0.0
real,parameter :: efmax = 10.0
real,parameter :: xl = 4.0e4
real,parameter :: critac = 1.0e-5
real,parameter :: gmax = 1.
real,parameter :: veleps = 1.0
real,parameter :: factop = 0.5
real,parameter :: frc = 1.0
real,parameter :: ce = 0.8
real,parameter :: cg = 0.5
integer,parameter :: kpblmin = 2
!
! local variables
!
integer :: i,k,lcap,lcapp1,nwd,idir, &
klcap,kp1,ikount,kk
!
real :: rcs,rclcs,csg,fdir,cleff,cs,rcsks, &
wdir,ti,rdz,temp,tem2,dw2,shr2,bvf2,rdelks, &
wtkbj,tem,gfobnv,hd,fro,rim,temc,tem1,efact, &
temv,dtaux,dtauy
!
logical :: ldrag(its:ite),icrilv(its:ite), &
flag(its:ite),kloop1(its:ite)
!
real :: taub(its:ite),taup(its:ite,kts:kte+1), &
xn(its:ite),yn(its:ite), &
ubar(its:ite),vbar(its:ite), &
fr(its:ite),ulow(its:ite), &
rulow(its:ite),bnv(its:ite), &
oa(its:ite),ol(its:ite), &
roll(its:ite),dtfac(its:ite), &
brvf(its:ite),xlinv(its:ite), &
delks(its:ite),delks1(its:ite), &
bnv2(its:ite,kts:kte),usqj(its:ite,kts:kte), &
taud(its:ite,kts:kte),ro(its:ite,kts:kte), &
vtk(its:ite,kts:kte),vtj(its:ite,kts:kte), &
zlowtop(its:ite),velco(its:ite,kts:kte-1), &
coefm(its:ite)
!
integer :: kbl(its:ite),klowtop(its:ite)
!
logical :: iope
integer,parameter :: mdir=8
integer :: nwdir(mdir)
data nwdir/6,7,5,8,2,3,1,4/
!
! variables for flow-blocking drag
!
real,parameter :: frmax = 10.
real,parameter :: olmin = 1.0e-5
real,parameter :: odmin = 0.1
real,parameter :: odmax = 10.
real,parameter :: erad = 6371.315e+3
integer :: komax(its:ite)
integer :: kblk
real :: cd
real :: zblk,tautem
real :: pe,ke
real :: delx,dely,dxy4(4),dxy4p(4)
real :: dxy(its:ite),dxyp(its:ite)
real :: ol4p(4),olp(its:ite),od(its:ite)
real :: taufb(its:ite,kts:kte+1)
!
!---- constants
!
rcs = sqrt(rcl)
cs = 1. / sqrt(rcl)
csg = cs * g
lcap = kte
lcapp1 = lcap + 1
fdir = mdir / (2.0*pi)
!
!--- calculate length of grid for flow-blocking drag
!
delx = dxmeter
dely = dxmeter
dxy4(1) = delx
dxy4(2) = dely
dxy4(3) = sqrt(delx*delx + dely*dely)
dxy4(4) = dxy4(3)
dxy4p(1) = dxy4(2)
dxy4p(2) = dxy4(1)
dxy4p(3) = dxy4(4)
dxy4p(4) = dxy4(3)
!
!
!-----initialize arrays
!
dtaux = 0.0
dtauy = 0.0
do i = its,ite
klowtop(i) = 0
kbl(i) = 0
enddo
!
do i = its,ite
xn(i) = 0.0
yn(i) = 0.0
ubar (i) = 0.0
vbar (i) = 0.0
roll (i) = 0.0
taub (i) = 0.0
taup(i,1) = 0.0
oa(i) = 0.0
ol(i) = 0.0
ulow (i) = 0.0
dtfac(i) = 1.0
ldrag(i) = .false.
icrilv(i) = .false.
flag(i) = .true.
enddo
!
do k = kts,kte
do i = its,ite
usqj(i,k) = 0.0
bnv2(i,k) = 0.0
vtj(i,k) = 0.0
vtk(i,k) = 0.0
taup(i,k) = 0.0
taud(i,k) = 0.0
dtaux2d(i,k)= 0.0
dtauy2d(i,k)= 0.0
enddo
enddo
!
do i = its,ite
taup(i,kte+1) = 0.0
xlinv(i) = 1.0/xl
enddo
!
! initialize array for flow-blocking drag
!
taufb(its:ite,kts:kte+1) = 0.0
komax(its:ite) = 0
!
do k = kts,kte
do i = its,ite
vtj(i,k) = t1(i,k) * (1.+fv*q1(i,k))
vtk(i,k) = vtj(i,k) / prslk(i,k)
ro(i,k) = 1./rd * prsl(i,k) / vtj(i,k) ! density kg/m**3
enddo
enddo
!
! determine reference level: maximum of 2*var and pbl heights
!
do i = its,ite
zlowtop(i) = 2. * var(i)
enddo
!
do i = its,ite
kloop1(i) = .true.
enddo
!
do k = kts+1,kte
do i = its,ite
if(kloop1(i).and.zl(i,k)-zl(i,1).ge.zlowtop(i)) then
klowtop(i) = k+1
kloop1(i) = .false.
endif
enddo
enddo
!
do i = its,ite
kbl(i) = max(kpbl(i), klowtop(i))
kbl(i) = max(min(kbl(i),kpblmax),kpblmin)
enddo
!
! determine the level of maximum orographic height
!
komax(:) = kbl(:)
!
do i = its,ite
delks(i) = 1.0 / (prsi(i,1) - prsi(i,kbl(i)))
delks1(i) = 1.0 / (prsl(i,1) - prsl(i,kbl(i)))
enddo
!
! compute low level averages within pbl
!
do k = kts,kpblmax
do i = its,ite
if (k.lt.kbl(i)) then
rcsks = rcs * del(i,k) * delks(i)
rdelks = del(i,k) * delks(i)
ubar(i) = ubar(i) + rcsks * u1(i,k) ! pbl u mean
vbar(i) = vbar(i) + rcsks * v1(i,k) ! pbl v mean
roll(i) = roll(i) + rdelks * ro(i,k) ! ro mean
endif
enddo
enddo
!
! figure out low-level horizontal wind direction
!
! nwd 1 2 3 4 5 6 7 8
! wd w s sw nw e n ne se
!
do i = its,ite
wdir = atan2(ubar(i),vbar(i)) + pi
idir = mod(nint(fdir*wdir),mdir) + 1
nwd = nwdir(idir)
oa(i) = (1-2*int( (nwd-1)/4 )) * oa4(i,mod(nwd-1,4)+1)
ol(i) = ol4(i,mod(nwd-1,4)+1)
!
!----- compute orographic width along (ol) and perpendicular (olp)
!----- the direction of wind
!
ol4p(1) = ol4(i,2)
ol4p(2) = ol4(i,1)
ol4p(3) = ol4(i,4)
ol4p(4) = ol4(i,3)
olp(i) = ol4p(mod(nwd-1,4)+1)
!
!----- compute orographic direction (horizontal orographic aspect ratio)
!
od(i) = olp(i)/max(ol(i),olmin)
od(i) = min(od(i),odmax)
od(i) = max(od(i),odmin)
!
!----- compute length of grid in the along(dxy) and cross(dxyp) wind directions
!
dxy(i) = dxy4(MOD(nwd-1,4)+1)
dxyp(i) = dxy4p(MOD(nwd-1,4)+1)
enddo
!
!--- saving richardson number in usqj for migwdi
!
do k = kts,kte-1
do i = its,ite
ti = 2.0 / (t1(i,k)+t1(i,k+1))
rdz = 1./(zl(i,k+1) - zl(i,k))
tem1 = u1(i,k) - u1(i,k+1)
tem2 = v1(i,k) - v1(i,k+1)
dw2 = rcl*(tem1*tem1 + tem2*tem2)
shr2 = max(dw2,dw2min) * rdz * rdz
bvf2 = g*(g/cp+rdz*(vtj(i,k+1)-vtj(i,k))) * ti
usqj(i,k) = max(bvf2/shr2,rimin)
bnv2(i,k) = 2.0*g*rdz*(vtk(i,k+1)-vtk(i,k))/(vtk(i,k+1)+vtk(i,k))
bnv2(i,k) = max( bnv2(i,k), bnv2min )
enddo
enddo
!
!----compute the "low level" or 1/3 wind magnitude (m/s)
!
do i = its,ite
ulow(i) = max(sqrt(ubar(i)*ubar(i) + vbar(i)*vbar(i)), 1.0)
rulow(i) = 1./ulow(i)
enddo
!
do k = kts,kte-1
do i = its,ite
velco(i,k) = (0.5*rcs) * ((u1(i,k)+u1(i,k+1)) * ubar(i) &
+ (v1(i,k)+v1(i,k+1)) * vbar(i))
velco(i,k) = velco(i,k) * rulow(i)
if ((velco(i,k).lt.veleps) .and. (velco(i,k).gt.0.)) then
velco(i,k) = veleps
endif
enddo
enddo
!
! no drag when critical level in the base layer
!
do i = its,ite
ldrag(i) = velco(i,1).le.0.
enddo
!
! no drag when velco.lt.0
!
do k = kpblmin,kpblmax
do i = its,ite
if (k .lt. kbl(i)) ldrag(i) = ldrag(i).or. velco(i,k).le.0.
enddo
enddo
!
! no drag when bnv2.lt.0
!
do k = kts,kpblmax
do i = its,ite
if (k .lt. kbl(i)) ldrag(i) = ldrag(i).or. bnv2(i,k).lt.0.
enddo
enddo
!
!-----the low level weighted average ri is stored in usqj(1,1; im)
!-----the low level weighted average n**2 is stored in bnv2(1,1; im)
!---- this is called bnvl2 in phys_gwd_alpert_sub not bnv2
!---- rdelks (del(k)/delks) vert ave factor so we can * instead of /
!
do i = its,ite
wtkbj = (prsl(i,1)-prsl(i,2)) * delks1(i)
bnv2(i,1) = wtkbj * bnv2(i,1)
usqj(i,1) = wtkbj * usqj(i,1)
enddo
!
do k = kpblmin,kpblmax
do i = its,ite
if (k .lt. kbl(i)) then
rdelks = (prsl(i,k)-prsl(i,k+1)) * delks1(i)
bnv2(i,1) = bnv2(i,1) + bnv2(i,k) * rdelks
usqj(i,1) = usqj(i,1) + usqj(i,k) * rdelks
endif
enddo
enddo
!
do i = its,ite
ldrag(i) = ldrag(i) .or. bnv2(i,1).le.0.0
ldrag(i) = ldrag(i) .or. ulow(i).eq.1.0
ldrag(i) = ldrag(i) .or. var(i) .le. 0.0
enddo
!
! set all ri low level values to the low level value
!
do k = kpblmin,kpblmax
do i = its,ite
if (k .lt. kbl(i)) usqj(i,k) = usqj(i,1)
enddo
enddo
!
do i = its,ite
if (.not.ldrag(i)) then
bnv(i) = sqrt( bnv2(i,1) )
fr(i) = bnv(i) * rulow(i) * 2. * var(i) * od(i)
fr(i) = min(fr(i),frmax)
xn(i) = ubar(i) * rulow(i)
yn(i) = vbar(i) * rulow(i)
endif
enddo
!
! compute the base level stress and store it in taub
! calculate enhancement factor, number of mountains & aspect
! ratio const. use simplified relationship between standard
! deviation & critical hgt
!
do i = its,ite
if (.not. ldrag(i)) then
efact = (oa(i) + 2.) ** (ce*fr(i)/frc)
efact = min( max(efact,efmin), efmax )
!!!!!!! cleff (effective grid length) is highly tunable parameter
!!!!!!! the bigger (smaller) value produce weaker (stronger) wave drag
cleff = sqrt(dxy(i)**2. + dxyp(i)**2.)
cleff = 3. * max(dxmeter,cleff)
coefm(i) = (1. + ol(i)) ** (oa(i)+1.)
xlinv(i) = coefm(i) / cleff
tem = fr(i) * fr(i) * oc1(i)
gfobnv = gmax * tem / ((tem + cg)*bnv(i))
taub(i) = xlinv(i) * roll(i) * ulow(i) * ulow(i) &
* ulow(i) * gfobnv * efact
else
taub(i) = 0.0
xn(i) = 0.0
yn(i) = 0.0
endif
enddo
!
! now compute vertical structure of the stress.
!
do k = kts,kpblmax
do i = its,ite
if (k .le. kbl(i)) taup(i,k) = taub(i)
enddo
enddo
!
do k = kpblmin, kte-1 ! vertical level k loop!
kp1 = k + 1
do i = its,ite
!
! unstablelayer if ri < ric
! unstable layer if upper air vel comp along surf vel <=0 (crit lay)
! at (u-c)=0. crit layer exists and bit vector should be set (.le.)
!
if (k .ge. kbl(i)) then
icrilv(i) = icrilv(i) .or. ( usqj(i,k) .lt. ric) &
.or. (velco(i,k) .le. 0.0)
brvf(i) = max(bnv2(i,k),bnv2min) ! brunt-vaisala frequency squared
brvf(i) = sqrt(brvf(i)) ! brunt-vaisala frequency
endif
enddo
!
do i = its,ite
if (k .ge. kbl(i) .and. (.not. ldrag(i))) then
if (.not.icrilv(i) .and. taup(i,k) .gt. 0.0 ) then
temv = 1.0 / velco(i,k)
tem1 = coefm(i)/dxy(i)*(ro(i,kp1)+ro(i,k))*brvf(i)*velco(i,k)*0.5
hd = sqrt(taup(i,k) / tem1)
fro = brvf(i) * hd * temv
!
! rim is the minimum-richardson number by shutts (1985)
!
tem2 = sqrt(usqj(i,k))
tem = 1. + tem2 * fro
rim = usqj(i,k) * (1.-fro) / (tem * tem)
!
! check stability to employ the 'saturation hypothesis'
! of lindzen (1981) except at tropospheric downstream regions
!
if (rim .le. ric) then ! saturation hypothesis!
if ((oa(i) .le. 0.).or.(kp1 .ge. kpblmin )) then
temc = 2.0 + 1.0 / tem2
hd = velco(i,k) * (2.*sqrt(temc)-temc) / brvf(i)
taup(i,kp1) = tem1 * hd * hd
endif
else ! no wavebreaking!
taup(i,kp1) = taup(i,k)
endif
endif
endif
enddo
enddo
!
if(lcap.lt.kte) then
do klcap = lcapp1,kte
do i = its,ite
taup(i,klcap) = prsi(i,klcap) / prsi(i,lcap) * taup(i,lcap)
enddo
enddo
endif
do i = its,ite
if(.not.ldrag(i)) then
!
!------- determine the height of flow-blocking layer
!
kblk = 0
pe = 0.0
do k = kte, kpblmin, -1
if(kblk.eq.0 .and. k.le.komax(i)) then
pe = pe + bnv2(i,k)*(zl(i,komax(i))-zl(i,k))*del(i,k)/g/ro(i,k)
ke = 0.5*((rcs*u1(i,k))**2.+(rcs*v1(i,k))**2.)
!
!---------- apply flow-blocking drag when pe >= ke
!
if(pe.ge.ke) then
kblk = k
kblk = min(kblk,kbl(i))
zblk = zl(i,kblk)-zl(i,kts)
endif
endif
enddo
if(kblk.ne.0) then
!
!--------- compute flow-blocking stress
!
cd = max(2.0-1.0/od(i),0.0)
taufb(i,kts) = 0.5 * roll(i) * coefm(i) / dxy(i)**2 * cd * dxyp(i) &
* olp(i) * zblk * ulow(i)**2
tautem = taufb(i,kts)/float(kblk-kts)
do k = kts+1, kblk
taufb(i,k) = taufb(i,k-1) - tautem
enddo
!
!----------sum orographic GW stress and flow-blocking stress
!
taup(i,:) = taup(i,:) + taufb(i,:)
endif
endif
enddo
!
! calculate - (g)*d(tau)/d(pressure) and deceleration terms dtaux, dtauy
!
do k = kts,kte
do i = its,ite
taud(i,k) = 1. * (taup(i,k+1) - taup(i,k)) * csg / del(i,k)
enddo
enddo
!
! limit de-acceleration (momentum deposition ) at top to 1/2 value
! the idea is some stuff must go out the 'top'
!
do klcap = lcap,kte
do i = its,ite
taud(i,klcap) = taud(i,klcap) * factop
enddo
enddo
!
! if the gravity wave drag would force a critical line
! in the lower ksmm1 layers during the next deltim timestep,
! then only apply drag until that critical line is reached.
!
do k = kts,kpblmax-1
do i = its,ite
if (k .le. kbl(i)) then
if(taud(i,k).ne.0.) &
dtfac(i) = min(dtfac(i),abs(velco(i,k) &
/(deltim*rcs*taud(i,k))))
endif
enddo
enddo
!
do i = its,ite
dusfc(i) = 0.
dvsfc(i) = 0.
enddo
!
do k = kts,kte
do i = its,ite
taud(i,k) = taud(i,k) * dtfac(i)
dtaux = taud(i,k) * xn(i)
dtauy = taud(i,k) * yn(i)
dtaux2d(i,k) = dtaux
dtauy2d(i,k) = dtauy
dudt(i,k) = dtaux + dudt(i,k)
dvdt(i,k) = dtauy + dvdt(i,k)
dusfc(i) = dusfc(i) + dtaux * del(i,k)
dvsfc(i) = dvsfc(i) + dtauy * del(i,k)
enddo
enddo
!
do i = its,ite
dusfc(i) = (-1./g*rcs) * dusfc(i)
dvsfc(i) = (-1./g*rcs) * dvsfc(i)
enddo
!
return
end subroutine gwdo2d
!-------------------------------------------------------------------
end module module_bl_gwdo