-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrankorder.py
170 lines (138 loc) · 5.75 KB
/
rankorder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Copyright (c) 2012-2018, NECOTIS
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# - Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# - Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# - Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
# IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
# INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
# NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
# OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# Authors: Simon Brodeur, Jean Rouat (advisor)
# Date: April 18th, 2019
# Organization: Groupe de recherche en Neurosciences Computationnelles et Traitement Intelligent des Signaux (NECOTIS),
# Université de Sherbrooke, Canada
import logging
import numpy as np
import matplotlib.pyplot as plt
from brian2.units.stdunits import ms
from brian2.units.allunits import second
from matplotlib.lines import Line2D
logger = logging.getLogger(__name__)
class RocPattern(object):
def __init__(self, orders, times, width):
self.orders = orders
self.times = times
self.width = width
def plotPatterns(patterns, unit=ms):
fig = plt.figure(facecolor='white')
line, = plt.plot([], [], '.', color='gray')
ax = fig.add_subplot(1, 1, 1)
nbNeurons = np.max([len(p.orders) for p in patterns])
min_y = -0.5
ax.set_ylim((min_y, nbNeurons))
plt.ylabel('Neuron number')
if unit == ms:
plt.xlabel('Time [ms]')
elif unit == second:
plt.xlabel('Time [sec]')
else:
raise Exception('Unsupported unit provided')
plt.title('Rank-order coded patterns')
# Draw spikes
spikes = []
for n, p in enumerate(patterns):
for i, t in zip(range(nbNeurons), p.times):
spikes.append((i, t + n * p.width))
allst = []
if len(spikes):
sn, st = np.array(spikes).T
else:
sn, st = np.array([]), np.array([])
st /= unit
allsn = [sn]
allst.append(st)
sn = np.hstack(allsn)
st = np.hstack(allst)
line.set_xdata(np.array(st))
ax.set_xlim((0.0, np.max(st)))
line.set_ydata(sn)
# Draw lines between each pattern
for n in range(len(patterns)):
t = n * (patterns[n].width / unit)
line = Line2D([t, t], ax.get_ylim(), color='grey', linestyle='--', linewidth=1.0)
ax.add_line(line)
fig.canvas.draw()
return fig
def generateRankOrderCodedPatterns(nbNeurons, nbPatterns, widthEpoch=10 * ms, padding=1 * ms, refractory=0.0 * ms):
spiketimes = np.zeros((nbPatterns, nbNeurons)) * ms
orders = np.zeros((nbPatterns, nbNeurons))
# Loop for each class to generate
patterns = []
minT = padding
maxT = widthEpoch - padding
times = np.linspace(minT, maxT, nbNeurons)
for n in range(nbPatterns):
logger.debug('Generating pattern no.%d (out of %d)' % (n + 1, nbPatterns))
conflictFound = True
nbRetry = 0
maxRetry = 100000
while conflictFound and nbRetry < maxRetry:
if nbRetry > 0 and nbRetry % 1000 == 0:
logger.debug('Number of retries: %d' % (nbRetry))
genOrders = list(range(nbNeurons))
np.random.shuffle(genOrders)
# Ensure that the pattern doesn't already exist
conflictFound = False
for m in range(n):
if (genOrders == orders[m, :]).all():
conflictFound = True
nbRetry += 1
break
if not conflictFound and refractory > 0.0:
# Ensure each neuron is not in refractory period if concatenated with every other class
for target in range(nbNeurons):
for m in range(n):
if times[genOrders[target]] + widthEpoch - spiketimes[m, target] < refractory:
conflictFound = True
nbRetry += 1
break
if conflictFound:
break
if conflictFound:
raise Exception('Unable to generate all patterns: %d generated' % (n))
patterns.append(RocPattern(genOrders, times[genOrders], widthEpoch))
return patterns
def generateRankOrderCodedData(patterns, duration, delayEpoch):
t = 0.0 * second
indices = []
times = []
while t < duration:
p = np.random.choice(patterns)
if t + p.width + delayEpoch >= duration:
break
indices.extend(range(len(p.times)))
times.extend(t + p.times)
t += p.width + delayEpoch
indices = np.array(indices, dtype=np.int)
times = np.array(times) * second
# Sort by time
sortIndices = np.argsort(times)
times = times[sortIndices]
indices = indices[sortIndices]
return indices, times