Swin ReID: Swin Transformer-based Object Re-Identification
Please refer to TransReID.
pip install -r requirements.txt
(we use /torch 1.7.1 /torchvision 0.8.2 /timm 0.3.2 /cuda 11.7 / for training and evaluation.
Note that we use torch.cuda.amp to accelerate speed of training which requires pytorch >=1.6)
mkdir data
Download the person datasets Market-1501, MSMT17, DukeMTMC-reID,Occluded-Duke, and the vehicle datasets VehicleID, VeRi-776, Then unzip them and rename them under the directory like
data
├── market1501
│ └── images ..
├── MSMT17
│ └── images ..
├── dukemtmcreid
│ └── images ..
├── Occluded_Duke
│ └── images ..
├── VehicleID_V1.0
│ └── images ..
└── VeRi
└── images ..
You need to download the ImageNet pretrained transformer model : ViT-Base, ViT-Small, DeiT-Small, DeiT-Base
The ImageNet pretrained swin transformer model: [Swin-base]https://drive.google.com/file/d/1ESQNMrZUsqqboym5GtKeV9L4-m8dpcAr/view?usp=sharing
We utilize 1 GPU for training.
python train.py --config_file configs/transformer_base.yml MODEL.DEVICE_ID "('your device id')" MODEL.STRIDE_SIZE ${1} MODEL.SIE_CAMERA ${2} MODEL.SIE_VIEW ${3} MODEL.JPM ${4} MODEL.TRANSFORMER_TYPE ${5} OUTPUT_DIR ${OUTPUT_DIR} DATASETS.NAMES "('your dataset name')"
${1}
: stride size for pure transformer, e.g. [16, 16], [14, 14], [12, 12]${2}
: whether using SIE with camera, True or False.${3}
: whether using SIE with view, True or False.${4}
: whether using JPM, True or False.${5}
: choose transformer type from'vit_base_patch16_224_TransReID'
,(The structure of the deit is the same as that of the vit, and only need to change the imagenet pretrained model)'vit_small_patch16_224_TransReID'
,'deit_small_patch16_224_TransReID'
,${OUTPUT_DIR}
: folder for saving logs and checkpoints, e.g.../logs/market1501
or you can directly train with following yml and commands:
# DukeMTMC TransReID (baseline + SIE + JPM)
python train.py --config_file configs/DukeMTMC/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')"
# DukeMTMC Swin TransReID with stride size [12, 12] (baseline)
python train.py --config_file configs/DukeMTMC/swin_transreid_stride.yml MODEL.DEVICE_ID "('0')"
# MSMT17
python train.py --config_file configs/MSMT17/swin_transreid_stride.yml MODEL.DEVICE_ID "('0')"
# OCC_Duke
python train.py --config_file configs/OCC_Duke/swin_transreid_stride.yml MODEL.DEVICE_ID "('0')"
# Market
python train.py --config_file configs/Market/swin_transreid_stride.yml MODEL.DEVICE_ID "('0')"
Tips: For person datasets with size 256x128, Swin TransReID with stride occupies 12GB GPU memory.
## Evaluation
```bash
python test.py --config_file 'choose which config to test' MODEL.DEVICE_ID "('your device id')" TEST.WEIGHT "('your path of trained checkpoints')"
Some examples:
# DukeMTMC
python test.py --config_file configs/DukeMTMC/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')" TEST.WEIGHT '../logs/duke_vit_transreid_stride/transformer_120.pth'
# MSMT17
python test.py --config_file configs/MSMT17/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')" TEST.WEIGHT '../logs/msmt17_vit_transreid_stride/transformer_120.pth'
# OCC_Duke
python test.py --config_file configs/OCC_Duke/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')" TEST.WEIGHT '../logs/occ_duke_vit_transreid_stride/transformer_120.pth'
# Market
python test.py --config_file configs/Market/vit_transreid_stride.yml MODEL.DEVICE_ID "('0')" TEST.WEIGHT '../logs/market_vit_transreid_stride/transformer_120.pth'
Codebase from reid-strong-baseline , pytorch-image-models
If you find this code useful for your research, please cite TransReID.
@InProceedings{He_2021_ICCV,
author = {He, Shuting and Luo, Hao and Wang, Pichao and Wang, Fan and Li, Hao and Jiang, Wei},
title = {TransReID: Transformer-Based Object Re-Identification},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021},
pages = {15013-15022}
}