-
Notifications
You must be signed in to change notification settings - Fork 2.8k
/
Copy pathclip_infer.py
155 lines (124 loc) · 5.18 KB
/
clip_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage example:
python scripts/vlm/clip_infer.py \
--image_url https://upload.wikimedia.org/wikipedia/commons/0/0f/1665_Girl_with_a_Pearl_Earring.jpg \
--hf_path hf://openai/clip-vit-large-patch14 \
--classes "a dog" "a boy" "a girl"
It should generate a high probability for "a girl" tag, e.g.
Nemo: CLIP text probability: [('a dog', 0.0048940657), ('a boy', 0.002311793), ('a girl', 0.9927942)]
HF: CLIP text probability: [('a dog', 0.0048940657), ('a boy', 0.002311793), ('a girl', 0.9927942)]
"""
import argparse
import os
import requests
import torch
from PIL import Image
from transformers import AutoProcessor
from transformers import CLIPModel as HFCLIPModel
import nemo.lightning as nl
from nemo.collections.vlm import CLIPModel
def load_image(image_path: str) -> Image.Image:
"""
Load an image from a URL or local file path.
Args:
image_path (str): The URL or local path to the image.
Returns:
Image.Image: The loaded PIL image object, or None if loading fails.
"""
try:
if os.path.exists(image_path): # Check if it's a local file path
image = Image.open(image_path)
else: # Assume it's a remote URL
response = requests.get(image_path, stream=True)
response.raise_for_status()
image = Image.open(response.raw)
return image
except (requests.exceptions.RequestException, FileNotFoundError, IOError) as e:
print(f"Error loading image from {image_path}: {e}")
return None
def main(args) -> None:
# pylint: disable=C0115,C0116
strategy = nl.MegatronStrategy(
tensor_model_parallel_size=1,
ckpt_include_optimizer=False,
ckpt_save_optimizer=False,
)
trainer = nl.Trainer(
devices=1,
max_steps=1000,
accelerator="gpu",
strategy=strategy,
plugins=nl.MegatronMixedPrecision(precision="bf16-mixed"),
val_check_interval=1000,
limit_val_batches=50,
)
hf_repo = args.hf_path.split("//")[1]
processor = AutoProcessor.from_pretrained(hf_repo)
max_length = processor.tokenizer.model_max_length
# Load the image
raw_image = load_image(args.image_url)
if raw_image is None:
return # Exit if the image can't be loaded
fabric = trainer.to_fabric()
model = fabric.import_model(args.hf_path, CLIPModel)
model = model.module.cuda()
# Freeze the models, We have a few nesting in the model
vision_model = model.module.module.vision_model.eval()
text_model = model.module.module.text_model.eval()
with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch.bfloat16):
# %% Zero-shot classification
classes = args.classes
inputs = processor(
text=classes,
images=[raw_image],
return_tensors="pt",
truncation=True, # Truncate if the sentence is longer than max_seq_length
padding='max_length', # Pad to max_seq_length
max_length=max_length,
)
inputs = {key: value.to("cuda") for key, value in inputs.items()}
model_hf = HFCLIPModel.from_pretrained(hf_repo)
model_hf = model_hf.to("cuda")
output_hf = model_hf(**inputs)
image_embeds_nemo = vision_model(inputs["pixel_values"].cuda().to(torch.bfloat16))
image_embeds_hf = output_hf["image_embeds"]
text_embeds_nemo = text_model(inputs["input_ids"].cuda())
text_embeds_hf = output_hf["text_embeds"]
image_embeds_nemo /= image_embeds_nemo.norm(dim=-1, keepdim=True)
text_embeds_nemo /= text_embeds_nemo.norm(dim=-1, keepdim=True)
nemo_probs = (100.0 * image_embeds_nemo @ text_embeds_nemo.T).softmax(dim=-1)
hf_probs = (100.0 * image_embeds_hf @ text_embeds_hf.T).softmax(dim=-1)
print(f"Nemo: CLIP text probability: ", list(zip(classes, nemo_probs[0].cpu().numpy())))
print(f"HF: CLIP text probability: ", list(zip(classes, hf_probs[0].cpu().numpy())))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Clip Verification Script")
parser.add_argument(
"--image_url",
type=str,
default="1665_Girl_with_a_Pearl_Earring.jpg",
help="URL of the image to use for inference.",
)
parser.add_argument(
"--hf_path",
type=str,
default="hf://openai/clip-vit-large-patch14",
help="Path to the Huggingface model.",
)
parser.add_argument(
'--classes', nargs='+', type=str, help="Classes for texts", default=["a dog", "a boy", "a girl"]
)
args = parser.parse_args()
main(args)