-
Notifications
You must be signed in to change notification settings - Fork 149
/
generate-help.txt
35 lines (30 loc) · 1.83 KB
/
generate-help.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
Usage: generate.py [OPTIONS]
Generate random images using the techniques described in the paper
"Elucidating the Design Space of Diffusion-Based Generative Models".
Examples:
# Generate 64 images and save them as out/*.png
python generate.py --outdir=out --seeds=0-63 --batch=64 \
--network=https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/edm-cifar10-32x32-cond-vp.pkl
# Generate 1024 images using 2 GPUs
torchrun --standalone --nproc_per_node=2 generate.py --outdir=out --seeds=0-999 --batch=64 \
--network=https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/edm-cifar10-32x32-cond-vp.pkl
Options:
--network PATH|URL Network pickle filename [required]
--outdir DIR Where to save the output images [required]
--seeds LIST Random seeds (e.g. 1,2,5-10) [default: 0-63]
--subdirs Create subdirectory for every 1000 seeds
--class INT Class label [default: random] [x>=0]
--batch INT Maximum batch size [default: 64; x>=1]
--steps INT Number of sampling steps [default: 18; x>=1]
--sigma_min FLOAT Lowest noise level [default: varies] [x>0]
--sigma_max FLOAT Highest noise level [default: varies] [x>0]
--rho FLOAT Time step exponent [default: 7; x>0]
--S_churn FLOAT Stochasticity strength [default: 0; x>=0]
--S_min FLOAT Stoch. min noise level [default: 0; x>=0]
--S_max FLOAT Stoch. max noise level [default: inf; x>=0]
--S_noise FLOAT Stoch. noise inflation [default: 1]
--solver euler|heun Ablate ODE solver
--disc vp|ve|iddpm|edm Ablate time step discretization {t_i}
--schedule vp|ve|linear Ablate noise schedule sigma(t)
--scaling vp|none Ablate signal scaling s(t)
--help Show this message and exit.