Skip to content

A unified interface to many trajectory forecasting datasets.

License

Notifications You must be signed in to change notification settings

NVlabs/trajdata

Repository files navigation

Unified Trajectory Data Loader

Code style: black Imports: isort License

Installation

The easiest way to install trajdata is through PyPI with

pip install trajdata

In case you would also like to use datasets such as nuScenes and Lyft Level 5 (which require their own devkits to access raw data), the following will also install the respective devkits.

# For nuScenes
pip install "trajdata[nusc]"

# For Lyft
pip install "trajdata[lyft]"

# Both
pip install "trajdata[nusc,lyft]"

Then, download the raw datasets (nuScenes, Lyft Level 5, ETH/UCY, etc) in case you do not already have them. For more information about how to structure dataset folders/files, please see DATASETS.md.

Package Developer Installation

First, in whichever environment you would like to use (conda, venv, ...), make sure to install all required dependencies with

pip install -r requirements.txt

Then, install trajdata itself in editable mode with

pip install -e .

Data Preprocessing [Optional]

The dataloader operates via a two-stage process, visualized below. architecture While optional, we recommend first preprocessing data into a canonical format. Take a look at the examples/preprocess_data.py script for an example script that does this. Data preprocessing will execute the first part of the diagram above and create data caches for each specified dataset.

Note: Explicitly preprocessing datasets like this is not necessary; the dataloader will always internally check if there exists a cache for any requested data and will create one if not.

Data Loading

At a minimum, batches of data for training/evaluation/etc can be loaded the following way:

import os
from torch.utils.data import DataLoader
from trajdata import AgentBatch, UnifiedDataset

# See below for a list of already-supported datasets and splits.
dataset = UnifiedDataset(
    desired_data=["nusc_mini, lyft_sample"],
    data_dirs={  # Remember to change this to match your filesystem!
        "nusc_mini": "~/datasets/nuScenes",
        "lyft_sample": "~/datasets/lyft/scenes/sample.zarr",
    },
)

dataloader = DataLoader(
    dataset,
    batch_size=64,
    shuffle=True,
    collate_fn=dataset.get_collate_fn(),
    num_workers=os.cpu_count(), # This can be set to 0 for single-threaded loading, if desired.
)

batch: AgentBatch
for batch in dataloader:
    # Train/evaluate/etc.
    pass

For a more comprehensive example, please see examples/batch_example.py.

For more information on all of the possible UnifiedDataset constructor arguments, please see src/trajdata/dataset.py.

Supported Datasets

Currently, the dataloader supports interfacing with the following datasets:

Dataset ID Splits Add'l Tags Description
nuScenes nusc train, val, test boston, singapore nuScenes' training/validation/test splits (700/150/150 scenes)
nuScenes Mini nusc_mini mini_train, mini_val boston, singapore nuScenes mini training/validation splits (8/2 scenes)
Lyft Level 5 Train lyft_train train palo_alto Lyft Level 5 training data - part 1/2 (8.4 GB)
Lyft Level 5 Train Full lyft_train_full train palo_alto Lyft Level 5 training data - part 2/2 (70 GB)
Lyft Level 5 Validation lyft_val val palo_alto Lyft Level 5 validation data (8.2 GB)
Lyft Level 5 Sample lyft_sample mini_train, mini_val palo_alto Lyft Level 5 sample data (100 scenes, randomly split 80/20 for training/validation)
ETH - Univ eupeds_eth train, val, train_loo, val_loo, test_loo zurich The ETH (University) scene from the ETH BIWI Walking Pedestrians dataset
ETH - Hotel eupeds_hotel train, val, train_loo, val_loo, test_loo zurich The Hotel scene from the ETH BIWI Walking Pedestrians dataset
UCY - Univ eupeds_univ train, val, train_loo, val_loo, test_loo cyprus The University scene from the UCY Pedestrians dataset
UCY - Zara1 eupeds_zara1 train, val, train_loo, val_loo, test_loo cyprus The Zara1 scene from the UCY Pedestrians dataset
UCY - Zara2 eupeds_zara2 train, val, train_loo, val_loo, test_loo cyprus The Zara2 scene from the UCY Pedestrians dataset

Examples

Multiple Datasets

The following will load data from both the nuScenes mini dataset as well as the ETH - University scene from the ETH BIWI Walking Pedestrians dataset.

dataset = UnifiedDataset(desired_data=["nusc_mini", "eupeds_eth"])

Adding New Datasets

The code that interfaces raw datasets can be found in src/trajdata/dataset_specific.

To add a new dataset, ...

Simulation Interface

One additional feature of trajdata is that it can be used to initialize simulations from real data and track resulting agent motion, metrics, etc.

At a minimum, a simulation can be initialized and stepped through as follows (also present in examples/simple_sim_example.py):

from typing import Dict # Just for type annotations

import numpy as np

from trajdata import AgentBatch, UnifiedDataset
from trajdata.data_structures.scene_metadata import Scene # Just for type annotations
from trajdata.simulation import SimulationScene

# See below for a list of already-supported datasets and splits.
dataset = UnifiedDataset(
    desired_data=["nusc_mini"],
    data_dirs={  # Remember to change this to match your filesystem!
        "nusc_mini": "~/datasets/nuScenes",
    },
)

desired_scene: Scene = dataset.get_scene(scene_idx=0)
sim_scene = SimulationScene(
    env_name="nusc_mini_sim",
    scene_name="sim_scene",
    scene=desired_scene,
    dataset=dataset,
    init_timestep=0,
    freeze_agents=True,
)

obs: AgentBatch = sim_scene.reset()
for t in range(1, sim_scene.scene_info.length_timesteps):
    new_xyh_dict: Dict[str, np.ndarray] = dict()

    # Everything inside the forloop just sets
    # agents' next states to their current ones.
    for idx, agent_name in enumerate(obs.agent_name):
        curr_yaw = obs.curr_agent_state[idx, -1]
        curr_pos = obs.curr_agent_state[idx, :2]

        next_state = np.zeros((3,))
        next_state[:2] = curr_pos
        next_state[2] = curr_yaw
        new_xyh_dict[agent_name] = next_state

    obs = sim_scene.step(new_xyh_dict)

examples/sim_example.py contains a more comprehensive example which initializes a simulation from a scene in the nuScenes mini dataset, steps through it by replaying agents' GT motions, and computes metrics based on scene statistics (e.g., displacement error from the original GT data, velocity/acceleration/jerk histograms).

TODO

  • Merge in upstream scene batch pull request.
  • Create a method like finalize() which writes all the batch information to a TFRecord/WebDataset/some other format which is (very) fast to read from for higher epoch training.
  • Add more examples to the README.
  • Finish README section about how to add a new dataset.