forked from Klipper3d/klipper
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraphstats.py
executable file
·337 lines (318 loc) · 11.8 KB
/
graphstats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
#!/usr/bin/env python
# Script to parse a logging file, extract the stats, and graph them
#
# Copyright (C) 2016-2021 Kevin O'Connor <[email protected]>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import optparse, datetime
import matplotlib
MAXBANDWIDTH=25000.
MAXBUFFER=2.
STATS_INTERVAL=5.
TASK_MAX=0.0025
APPLY_PREFIX = [
'mcu_awake', 'mcu_task_avg', 'mcu_task_stddev', 'bytes_write',
'bytes_read', 'bytes_retransmit', 'freq', 'adj',
'target', 'temp', 'pwm'
]
def parse_log(logname, mcu):
if mcu is None:
mcu = "mcu"
mcu_prefix = mcu + ":"
apply_prefix = { p: 1 for p in APPLY_PREFIX }
f = open(logname, 'r')
out = []
for line in f:
parts = line.split()
if not parts or parts[0] not in ('Stats', 'INFO:root:Stats'):
#if parts and parts[0] == 'INFO:root:shutdown:':
# break
continue
prefix = ""
keyparts = {}
for p in parts[2:]:
if '=' not in p:
prefix = p
if prefix == mcu_prefix:
prefix = ''
continue
name, val = p.split('=', 1)
if name in apply_prefix:
name = prefix + name
keyparts[name] = val
if 'print_time' not in keyparts:
continue
keyparts['#sampletime'] = float(parts[1][:-1])
out.append(keyparts)
f.close()
return out
def setup_matplotlib(output_to_file):
global matplotlib
if output_to_file:
matplotlib.use('Agg')
import matplotlib.pyplot, matplotlib.dates, matplotlib.font_manager
import matplotlib.ticker
def find_print_restarts(data):
runoff_samples = {}
last_runoff_start = last_buffer_time = last_sampletime = 0.
last_print_stall = 0
for d in reversed(data):
# Check for buffer runoff
sampletime = d['#sampletime']
buffer_time = float(d.get('buffer_time', 0.))
if (last_runoff_start and last_sampletime - sampletime < 5
and buffer_time > last_buffer_time):
runoff_samples[last_runoff_start][1].append(sampletime)
elif buffer_time < 1.:
last_runoff_start = sampletime
runoff_samples[last_runoff_start] = [False, [sampletime]]
else:
last_runoff_start = 0.
last_buffer_time = buffer_time
last_sampletime = sampletime
# Check for print stall
print_stall = int(d['print_stall'])
if print_stall < last_print_stall:
if last_runoff_start:
runoff_samples[last_runoff_start][0] = True
last_print_stall = print_stall
sample_resets = {sampletime: 1 for stall, samples in runoff_samples.values()
for sampletime in samples if not stall}
return sample_resets
def plot_mcu(data, maxbw):
# Generate data for plot
basetime = lasttime = data[0]['#sampletime']
lastbw = float(data[0]['bytes_write']) + float(data[0]['bytes_retransmit'])
sample_resets = find_print_restarts(data)
times = []
bwdeltas = []
loads = []
awake = []
hostbuffers = []
for d in data:
st = d['#sampletime']
timedelta = st - lasttime
if timedelta <= 0.:
continue
bw = float(d['bytes_write']) + float(d['bytes_retransmit'])
if bw < lastbw:
lastbw = bw
continue
load = float(d['mcu_task_avg']) + 3*float(d['mcu_task_stddev'])
if st - basetime < 15.:
load = 0.
pt = float(d['print_time'])
hb = float(d['buffer_time'])
if hb >= MAXBUFFER or st in sample_resets:
hb = 0.
else:
hb = 100. * (MAXBUFFER - hb) / MAXBUFFER
hostbuffers.append(hb)
times.append(datetime.datetime.utcfromtimestamp(st))
bwdeltas.append(100. * (bw - lastbw) / (maxbw * timedelta))
loads.append(100. * load / TASK_MAX)
awake.append(100. * float(d.get('mcu_awake', 0.)) / STATS_INTERVAL)
lasttime = st
lastbw = bw
# Build plot
fig, ax1 = matplotlib.pyplot.subplots()
ax1.set_title("MCU bandwidth and load utilization")
ax1.set_xlabel('Time')
ax1.set_ylabel('Usage (%)')
ax1.plot_date(times, bwdeltas, 'g', label='Bandwidth', alpha=0.8)
ax1.plot_date(times, loads, 'r', label='MCU load', alpha=0.8)
ax1.plot_date(times, hostbuffers, 'c', label='Host buffer', alpha=0.8)
ax1.plot_date(times, awake, 'y', label='Awake time', alpha=0.6)
fontP = matplotlib.font_manager.FontProperties()
fontP.set_size('x-small')
ax1.legend(loc='best', prop=fontP)
ax1.xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%H:%M'))
ax1.grid(True)
return fig
def plot_system(data):
# Generate data for plot
lasttime = data[0]['#sampletime']
lastcputime = float(data[0]['cputime'])
times = []
sysloads = []
cputimes = []
memavails = []
for d in data:
st = d['#sampletime']
timedelta = st - lasttime
if timedelta <= 0.:
continue
lasttime = st
times.append(datetime.datetime.utcfromtimestamp(st))
cputime = float(d['cputime'])
cpudelta = max(0., min(1.5, (cputime - lastcputime) / timedelta))
lastcputime = cputime
cputimes.append(cpudelta * 100.)
sysloads.append(float(d['sysload']) * 100.)
memavails.append(float(d['memavail']))
# Build plot
fig, ax1 = matplotlib.pyplot.subplots()
ax1.set_title("System load utilization")
ax1.set_xlabel('Time')
ax1.set_ylabel('Load (% of a core)')
ax1.plot_date(times, sysloads, '-', label='system load',
color='cyan', alpha=0.8)
ax1.plot_date(times, cputimes, '-', label='process time',
color='red', alpha=0.8)
ax2 = ax1.twinx()
ax2.set_ylabel('Available memory (KB)')
ax2.plot_date(times, memavails, '-', label='system memory',
color='yellow', alpha=0.3)
fontP = matplotlib.font_manager.FontProperties()
fontP.set_size('x-small')
ax1li, ax1la = ax1.get_legend_handles_labels()
ax2li, ax2la = ax2.get_legend_handles_labels()
ax1.legend(ax1li + ax2li, ax1la + ax2la, loc='best', prop=fontP)
ax1.xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%H:%M'))
ax1.grid(True)
return fig
def plot_mcu_frequencies(data):
all_keys = {}
for d in data:
all_keys.update(d)
graph_keys = { key: ([], []) for key in all_keys
if (key in ("freq", "adj")
or (key.endswith(":freq") or key.endswith(":adj"))) }
for d in data:
st = datetime.datetime.utcfromtimestamp(d['#sampletime'])
for key, (times, values) in graph_keys.items():
val = d.get(key)
if val not in (None, '0', '1'):
times.append(st)
values.append(float(val))
est_mhz = { key: round((sum(values)/len(values)) / 1000000.)
for key, (times, values) in graph_keys.items() }
# Build plot
fig, ax1 = matplotlib.pyplot.subplots()
ax1.set_title("MCU frequencies")
ax1.set_xlabel('Time')
ax1.set_ylabel('Microsecond deviation')
for key in sorted(graph_keys):
times, values = graph_keys[key]
mhz = est_mhz[key]
label = "%s(%dMhz)" % (key, mhz)
hz = mhz * 1000000.
ax1.plot_date(times, [(v - hz)/mhz for v in values], '.', label=label)
fontP = matplotlib.font_manager.FontProperties()
fontP.set_size('x-small')
ax1.legend(loc='best', prop=fontP)
ax1.xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%H:%M'))
ax1.yaxis.set_major_formatter(matplotlib.ticker.FormatStrFormatter('%d'))
ax1.grid(True)
return fig
def plot_mcu_frequency(data, mcu):
all_keys = {}
for d in data:
all_keys.update(d)
graph_keys = { key: ([], []) for key in all_keys
if key in ("freq", "adj") }
for d in data:
st = datetime.datetime.utcfromtimestamp(d['#sampletime'])
for key, (times, values) in graph_keys.items():
val = d.get(key)
if val not in (None, '0', '1'):
times.append(st)
values.append(float(val))
# Build plot
fig, ax1 = matplotlib.pyplot.subplots()
ax1.set_title("MCU '%s' frequency" % (mcu,))
ax1.set_xlabel('Time')
ax1.set_ylabel('Frequency')
for key in sorted(graph_keys):
times, values = graph_keys[key]
ax1.plot_date(times, values, '.', label=key)
fontP = matplotlib.font_manager.FontProperties()
fontP.set_size('x-small')
ax1.legend(loc='best', prop=fontP)
ax1.xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%H:%M'))
ax1.yaxis.set_major_formatter(matplotlib.ticker.FormatStrFormatter('%d'))
ax1.grid(True)
return fig
def plot_temperature(data, heaters):
fig, ax1 = matplotlib.pyplot.subplots()
ax2 = ax1.twinx()
for heater in heaters.split(','):
heater = heater.strip()
temp_key = heater + ':' + 'temp'
target_key = heater + ':' + 'target'
pwm_key = heater + ':' + 'pwm'
times = []
temps = []
targets = []
pwm = []
for d in data:
temp = d.get(temp_key)
if temp is None:
continue
times.append(datetime.datetime.utcfromtimestamp(d['#sampletime']))
temps.append(float(temp))
pwm.append(float(d.get(pwm_key, 0.)))
targets.append(float(d.get(target_key, 0.)))
ax1.plot_date(times, temps, '-', label='%s temp' % (heater,), alpha=0.8)
if any(targets):
label = '%s target' % (heater,)
ax1.plot_date(times, targets, '-', label=label, alpha=0.3)
if any(pwm):
label = '%s pwm' % (heater,)
ax2.plot_date(times, pwm, '-', label=label, alpha=0.2)
# Build plot
ax1.set_title("Temperature of %s" % (heaters,))
ax1.set_xlabel('Time')
ax1.set_ylabel('Temperature')
ax2.set_ylabel('pwm')
fontP = matplotlib.font_manager.FontProperties()
fontP.set_size('x-small')
ax1li, ax1la = ax1.get_legend_handles_labels()
ax2li, ax2la = ax2.get_legend_handles_labels()
ax1.legend(ax1li + ax2li, ax1la + ax2la, loc='best', prop=fontP)
ax1.xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%H:%M'))
ax1.grid(True)
return fig
def main():
# Parse command-line arguments
usage = "%prog [options] <logfile>"
opts = optparse.OptionParser(usage)
opts.add_option("-f", "--frequency", action="store_true",
help="graph mcu frequency")
opts.add_option("-s", "--system", action="store_true",
help="graph system load")
opts.add_option("-o", "--output", type="string", dest="output",
default=None, help="filename of output graph")
opts.add_option("-t", "--temperature", type="string", dest="heater",
default=None, help="graph heater temperature")
opts.add_option("-m", "--mcu", type="string", dest="mcu", default=None,
help="limit stats to the given mcu")
options, args = opts.parse_args()
if len(args) != 1:
opts.error("Incorrect number of arguments")
logname = args[0]
# Parse data
data = parse_log(logname, options.mcu)
if not data:
return
# Draw graph
setup_matplotlib(options.output is not None)
if options.heater is not None:
fig = plot_temperature(data, options.heater)
elif options.frequency:
if options.mcu is not None:
fig = plot_mcu_frequency(data, options.mcu)
else:
fig = plot_mcu_frequencies(data)
elif options.system:
fig = plot_system(data)
else:
fig = plot_mcu(data, MAXBANDWIDTH)
# Show graph
if options.output is None:
matplotlib.pyplot.show()
else:
fig.set_size_inches(8, 6)
fig.savefig(options.output)
if __name__ == '__main__':
main()