This demo automatically deploys the topology of services as defined in the Debezium Tutorial.
export DEBEZIUM_VERSION=1.4
mvn clean install -f avro-data-extractor/pom.xml
docker-compose up --build
# Deploy Postgres connector
curl -i -X PUT -H "Accept:application/json" -H "Content-Type:application/json" http://localhost:8083/connectors/inventory-connector-json-json/config -d @register-postgres-json-json.json
# Consume messages from the Debezium topic
docker run --rm --tty \
--network cloudevents-network \
debezium/tooling \
kafkacat -b kafka:9092 -C -o beginning -q \
-t dbserver1.inventory.customers | jq .
# Modify records in the database via psql client
docker-compose exec postgres env PGOPTIONS="--search_path=inventory" bash -c 'psql -U $POSTGRES_USER postgres'
In order to produce data
values without the embedded JSON schema, add "value.converter.json.schemas.enable" : "false"
to the connector configuration and PUT
it again.
# Deploy Postgres connector
curl -i -X PUT -H "Accept:application/json" -H "Content-Type:application/json" http://localhost:8083/connectors/inventory-connector-json-avro/config -d @register-postgres-json-avro.json
# Consume messages from the Debezium topic
docker run --rm --tty \
--network cloudevents-network \
debezium/tooling \
kafkacat -b kafka:9092 -C -o beginning -q \
-t dbserver2.inventory.customers | jq .
Observe how the data
field is (base64-encoded) Avro binary data.
A Kafka Streams application (see avro-data-extractor directory) processes this topic and writes out the extracted Avro data to the customers2
topic.
Examine its contents like so:
docker run --rm --tty \
--network cloudevents-network \
debezium/tooling \
kafkacat -b kafka:9092 -C -o beginning -q -s value=avro -r http://schema-registry:8081 \
-t customers2 | jq .
# Deploy Postgres connector
curl -i -X PUT -H "Accept:application/json" -H "Content-Type:application/json" http://localhost:8083/connectors/inventory-connector-avro-avro/config -d @register-postgres-avro-avro.json
# Consume messages from the Debezium topic:
docker run --rm --tty \
--network cloudevents-network \
debezium/tooling \
kafkacat -b kafka:9092 -C -o beginning -q -s value=avro -r http://schema-registry:8081 \
-t dbserver3.inventory.customers | jq .
Again the data
field is an Avro-encoded binary itself.
The same stream processing application writes out that data to the customers3
topic:
docker run --rm --tty \
--network cloudevents-network \
debezium/tooling \
kafkacat -b kafka:9092 -C -o beginning -q -s value=avro -r http://schema-registry:8081 \
-t customers2 | jq .
tbd.
docker-compose down
Should you need to establish a remote debugging session into a deployed connector, add the following to the environment
section of the connect
in the Compose file service:
- KAFKA_DEBUG=true
- DEBUG_SUSPEND_FLAG=n
Also expose the debugging port 5005 under ports
:
- 5005:5005
You can then establish a remote debugging session from your IDE on localhost:5005.
Listing all topics:
docker-compose exec kafka /kafka/bin/kafka-topics.sh --zookeeper zookeeper:2181 --list