forked from fudan-generative-vision/hallo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
65 lines (58 loc) · 2.01 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
"""
This script is a gradio web ui.
The script takes an image and an audio clip, and lets you configure all the
variables such as cfg_scale, pose_weight, face_weight, lip_weight, etc.
Usage:
This script can be run from the command line with the following command:
python scripts/app.py
"""
import argparse
import gradio as gr
from inference import inference_process
def predict(image, audio, size, steps, fps, cfg, pose_weight, face_weight, lip_weight, face_expand_ratio):
"""
Create a gradio interface with the configs.
"""
config = {
'data': {
'source_image': {
'width': size,
'height': size
},
'export_video': {
'fps': fps
}
},
'cfg_scale': cfg,
'source_image': image,
'driving_audio': audio,
'pose_weight': pose_weight,
'face_weight': face_weight,
'lip_weight': lip_weight,
'face_expand_ratio': face_expand_ratio,
'config': 'configs/inference/default.yaml',
'checkpoint': None,
'output': ".cache/output.mp4",
'inference_steps': steps
}
args = argparse.Namespace()
for key, value in config.items():
setattr(args, key, value)
return inference_process(args)
app = gr.Interface(
fn=predict,
inputs=[
gr.Image(label="source image (no webp)", type="filepath", format="jpeg"),
gr.Audio(label="source audio", type="filepath"),
gr.Number(label="size", value=512, minimum=256, maximum=512, step=64, precision=0),
gr.Number(label="steps", value=40, minimum=1, step=1, precision=0),
gr.Number(label="fps", value=25, minimum=1, step=1, precision=0),
gr.Slider(label="CFG Scale", value=3.5, minimum=0, maximum=10, step=0.01),
gr.Number(label="pose weight", value=1.0),
gr.Number(label="face weight", value=1.0),
gr.Number(label="lip weight", value=1.0),
gr.Number(label="face expand ratio", value=1.2),
],
outputs=[gr.Video()],
)
app.launch()