-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
1412 lines (1208 loc) · 51.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/001_utils.ipynb (unless otherwise specified).
__all__ = ['is_nparray', 'is_tensor', 'is_zarr', 'is_dask', 'is_memmap', 'is_slice', 'totensor', 'toarray', 'toL',
'to3dtensor', 'to2dtensor', 'to1dtensor', 'to3darray', 'to2darray', 'to1darray', 'to3d', 'to2d', 'to1d',
'to2dPlus', 'to3dPlus', 'to2dPlusTensor', 'to2dPlusArray', 'to3dPlusTensor', 'to3dPlusArray', 'todtype',
'bytes2size', 'bytes2GB', 'get_size', 'get_dir_size', 'get_file_size', 'is_file', 'is_dir',
'delete_all_in_dir', 'reverse_dict', 'is_tuple', 'itemify', 'isnone', 'exists', 'ifelse', 'is_not_close',
'test_not_close', 'test_type', 'test_ok', 'test_not_ok', 'test_error', 'test_eq_nan', 'assert_fn', 'test_gt',
'test_ge', 'test_lt', 'test_le', 'stack', 'stack_pad', 'pad_sequences', 'match_seq_len', 'random_shuffle',
'cat2int', 'cycle_dl', 'cycle_dl_to_device', 'cycle_dl_estimate', 'cache_data', 'memmap2cache',
'cache_memmap', 'get_func_defaults', 'get_idx_from_df_col_vals', 'get_sublist_idxs', 'flatten_list',
'display_pd_df', 'ttest', 'kstest', 'tscore', 'ttest_tensor', 'pcc', 'scc', 'a', 'b', 'remove_fn', 'npsave',
'np_save', 'permute_2D', 'random_normal', 'random_half_normal', 'random_normal_tensor',
'random_half_normal_tensor', 'default_dpi', 'get_plot_fig', 'fig2buf', 'plot_scatter', 'get_idxs',
'apply_cmap', 'torch_tile', 'to_tsfresh_df', 'pcorr', 'scorr', 'torch_diff', 'get_outliers_IQR',
'clip_outliers', 'get_percentile', 'torch_clamp', 'get_robustscale_params', 'torch_slice_by_dim',
'torch_nanmean', 'torch_nanstd', 'concat', 'reduce_memory_usage', 'cls_name', 'roll2d', 'roll3d',
'random_roll2d', 'random_roll3d', 'rotate_axis0', 'rotate_axis1', 'rotate_axis2', 'chunks_calculator',
'is_memory_shared', 'assign_in_chunks', 'create_array', 'create_empty_array', 'np_save_compressed',
'np_load_compressed', 'np2memmap', 'torch_mean_groupby', 'torch_flip', 'torch_nan_to_num',
'torch_masked_to_num', 'mpl_trend', 'int2digits', 'array2digits', 'sincos_encoding', 'linear_encoding',
'encode_positions', 'sort_generator', 'get_subset_dict', 'create_dir', 'remove_dir', 'named_partial',
'yaml2dict', 'str2list', 'str2index', 'get_cont_cols', 'get_cat_cols', 'alphabet', 'ALPHABET', 'get_mapping',
'map_array', 'log_tfm', 'to_sincos_time', 'plot_feature_dist', 'rolling_moving_average', 'ffill_sequence',
'bfill_sequence', 'fbfill_sequence', 'dummify', 'shuffle_along_axis', 'analyze_feature', 'analyze_array',
'get_relpath', 'split_in_chunks', 'save_object', 'load_object', 'get_idxs_to_keep']
# Cell
from scipy.stats import ttest_ind, ks_2samp, pearsonr, spearmanr, normaltest, linregress
import joblib
import string
from .imports import *
# Cell
def is_nparray(o): return isinstance(o, np.ndarray)
def is_tensor(o): return isinstance(o, torch.Tensor)
def is_zarr(o): return hasattr(o, 'oindex')
def is_dask(o): return hasattr(o, 'compute')
def is_memmap(o): return isinstance(o, np.memmap)
def is_slice(o): return isinstance(o, slice)
# Cell
def totensor(o):
if isinstance(o, torch.Tensor): return o
elif isinstance(o, np.ndarray): return torch.from_numpy(o)
elif isinstance(o, pd.DataFrame): return torch.from_numpy(o.values)
else:
try: return torch.tensor(o)
except: warn(f"Can't convert {type(o)} to torch.Tensor", Warning)
def toarray(o):
if isinstance(o, np.ndarray): return o
elif isinstance(o, torch.Tensor): return o.cpu().numpy()
elif isinstance(o, pd.DataFrame): return o.values
else:
try: return np.asarray(o)
except: warn(f"Can't convert {type(o)} to np.array", Warning)
def toL(o):
if isinstance(o, L): return o
elif isinstance(o, (np.ndarray, torch.Tensor)): return L(o.tolist())
else:
try: return L(o)
except: warn(f'passed object needs to be of type L, list, np.ndarray or torch.Tensor but is {type(o)}', Warning)
def to3dtensor(o):
o = totensor(o)
if o.ndim == 3: return o
elif o.ndim == 1: return o[None, None]
elif o.ndim == 2: return o[:, None]
assert False, f'Please, review input dimensions {o.ndim}'
def to2dtensor(o):
o = totensor(o)
if o.ndim == 2: return o
elif o.ndim == 1: return o[None]
elif o.ndim == 3: return o[0]
assert False, f'Please, review input dimensions {o.ndim}'
def to1dtensor(o):
o = totensor(o)
if o.ndim == 1: return o
elif o.ndim == 3: return o[0,0]
if o.ndim == 2: return o[0]
assert False, f'Please, review input dimensions {o.ndim}'
def to3darray(o):
o = toarray(o)
if o.ndim == 3: return o
elif o.ndim == 1: return o[None, None]
elif o.ndim == 2: return o[:, None]
assert False, f'Please, review input dimensions {o.ndim}'
def to2darray(o):
o = toarray(o)
if o.ndim == 2: return o
elif o.ndim == 1: return o[None]
elif o.ndim == 3: return o[0]
assert False, f'Please, review input dimensions {o.ndim}'
def to1darray(o):
o = toarray(o)
if o.ndim == 1: return o
elif o.ndim == 3: o = o[0,0]
elif o.ndim == 2: o = o[0]
assert False, f'Please, review input dimensions {o.ndim}'
def to3d(o):
if o.ndim == 3: return o
if isinstance(o, (np.ndarray, pd.DataFrame)): return to3darray(o)
if isinstance(o, torch.Tensor): return to3dtensor(o)
def to2d(o):
if o.ndim == 2: return o
if isinstance(o, np.ndarray): return to2darray(o)
if isinstance(o, torch.Tensor): return to2dtensor(o)
def to1d(o):
if o.ndim == 1: return o
if isinstance(o, np.ndarray): return to1darray(o)
if isinstance(o, torch.Tensor): return to1dtensor(o)
def to2dPlus(o):
if o.ndim >= 2: return o
if isinstance(o, np.ndarray): return to2darray(o)
elif isinstance(o, torch.Tensor): return to2dtensor(o)
def to3dPlus(o):
if o.ndim >= 3: return o
if isinstance(o, np.ndarray): return to3darray(o)
elif isinstance(o, torch.Tensor): return to3dtensor(o)
def to2dPlusTensor(o):
return to2dPlus(totensor(o))
def to2dPlusArray(o):
return to2dPlus(toarray(o))
def to3dPlusTensor(o):
return to3dPlus(totensor(o))
def to3dPlusArray(o):
return to3dPlus(toarray(o))
def todtype(dtype):
def _to_type(o, dtype=dtype):
if o.dtype == dtype: return o
elif isinstance(o, torch.Tensor): o = o.to(dtype=dtype)
elif isinstance(o, np.ndarray): o = o.astype(dtype)
return o
return _to_type
# Cell
def bytes2size(
size_bytes : int, # Number of bytes
decimals=2 # Number of decimals in the output
)->str:
if size_bytes == 0: return "0B"
size_name = ("B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB")
i = int(math.floor(math.log(size_bytes, 1024)))
p = math.pow(1024, i)
s = round(size_bytes / p, decimals)
return f'{s} {size_name[i]}'
def bytes2GB(byts):
return round(byts / math.pow(1024, 3), 2)
def get_size(
o, # Any object
return_str : bool = True, # True returns size in human-readable format (KB, MB, GB, ...). False in bytes.
decimals : int = 2, # Number of decimals in the output
):
s = sys.getsizeof(o)
if return_str: return bytes2size(s, decimals=decimals)
else: return s
def get_dir_size(
dir_path : str, # path to directory
return_str : bool = True, # True returns size in human-readable format (KB, MB, GB, ...). False in bytes.
decimals : int = 2, # Number of decimals in the output
verbose : bool = False, # Controls verbosity
):
assert os.path.isdir(dir_path)
total_size = 0
for dirpath, dirnames, filenames in os.walk(dir_path):
for f in filenames:
fp = os.path.join(dirpath, f)
# skip if it is symbolic link
if not os.path.islink(fp):
fp_size = os.path.getsize(fp)
total_size += fp_size
pv(f'file: {fp[-50:]:50} size: {fp_size}', verbose)
if return_str:
return bytes2size(total_size, decimals=decimals)
return total_size
def get_file_size(
file_path : str, # path to file
return_str : bool = True, # True returns size in human-readable format (KB, MB, GB, ...). False in bytes.
decimals : int = 2, # Number of decimals in the output
):
assert os.path.isfile(file_path)
fsize = os.path.getsize(file_path)
if return_str:
return bytes2size(fsize, decimals=decimals)
return fsize
# Cell
def is_file(path):
return os.path.isfile(path)
def is_dir(path):
return os.path.isdir(path)
# Cell
def delete_all_in_dir(tgt_dir, exception=None):
import shutil
if exception is not None and len(L(exception)) > 1: exception = tuple(exception)
for file in os.listdir(tgt_dir):
if exception is not None and file.endswith(exception): continue
file_path = os.path.join(tgt_dir, file)
if os.path.isfile(file_path) or os.path.islink(file_path): os.unlink(file_path)
elif os.path.isdir(file_path): shutil.rmtree(file_path)
# Cell
def reverse_dict(dictionary):
return {v: k for k, v in dictionary.items()}
# Cell
def is_tuple(o): return isinstance(o, tuple)
# Cell
def itemify(*o, tup_id=None):
o = [o_ for o_ in L(*o) if o_ is not None]
items = L(o).zip()
if tup_id is not None: return L([item[tup_id] for item in items])
else: return items
# Cell
def isnone(o):
return o is None
def exists(o): return o is not None
def ifelse(a, b, c):
"`b` if `a` is True else `c`"
return b if a else c
# Cell
def is_not_close(a, b, eps=1e-5):
"Is `a` within `eps` of `b`"
if hasattr(a, '__array__') or hasattr(b, '__array__'):
return (abs(a - b) > eps).all()
if isinstance(a, (Iterable, Generator)) or isinstance(b, (Iterable, Generator)):
return is_not_close(np.array(a), np.array(b), eps=eps)
return abs(a - b) > eps
def test_not_close(a, b, eps=1e-5):
"`test` that `a` is within `eps` of `b`"
test(a, b, partial(is_not_close, eps=eps), 'not_close')
def test_type(a, b):
return test_eq(type(a), type(b))
def test_ok(f, *args, **kwargs):
try:
f(*args, **kwargs)
e = 0
except:
e = 1
pass
test_eq(e, 0)
def test_not_ok(f, *args, **kwargs):
try:
f(*args, **kwargs)
e = 0
except:
e = 1
pass
test_eq(e, 1)
def test_error(error, f, *args, **kwargs):
try: f(*args, **kwargs)
except Exception as e:
test_eq(str(e), error)
def test_eq_nan(a,b):
"`test` that `a==b` excluding nan values (valid for torch.Tensor and np.ndarray)"
mask_a = torch.isnan(a) if isinstance(a, torch.Tensor) else np.isnan(a)
mask_b = torch.isnan(b) if isinstance(b, torch.Tensor) else np.isnan(b)
test(a[~mask_a],b[~mask_b],equals, '==')
# Cell
def assert_fn(*args, **kwargs): assert False, 'assertion test'
test_error('assertion test', assert_fn, 35, a=3)
# Cell
def test_gt(a,b):
"`test` that `a>b`"
test(a,b,gt,'>')
def test_ge(a,b):
"`test` that `a>=b`"
test(a,b,ge,'>')
def test_lt(a,b):
"`test` that `a>b`"
test(a,b,lt,'<')
def test_le(a,b):
"`test` that `a>b`"
test(a,b,le,'<=')
# Cell
def stack(o, axis=0, retain=True):
if hasattr(o, '__array__'): return o
if isinstance(o[0], torch.Tensor):
return retain_type(torch.stack(tuple(o), dim=axis), o[0]) if retain else torch.stack(tuple(o), dim=axis)
else:
return retain_type(np.stack(o, axis), o[0]) if retain else np.stack(o, axis)
def stack_pad(o, padding_value=np.nan):
'Converts a an iterable into a numpy array using padding if necessary'
if not is_listy(o) or not is_array(o):
if not hasattr(o, "ndim"): o = np.asarray([o])
else: o = np.asarray(o)
o_ndim = 1
if o.ndim > 1:
o_ndim = o.ndim
o_shape = o.shape
o = o.flatten()
o = [oi if (is_array(oi) and oi.ndim > 0) or is_listy(oi) else [oi] for oi in o]
row_length = len(max(o, key=len))
result = np.full((len(o), row_length), padding_value)
for i,row in enumerate(o):
result[i, :len(row)] = row
if o_ndim > 1:
if row_length == 1:
result = result.reshape(*o_shape)
else:
result = result.reshape(*o_shape, row_length)
return result
# Cell
def pad_sequences(
o, # Iterable object
maxlen:int=None, # Optional max length of the output. If None, max length of the longest individual sequence.
dtype:(str, type)=np.float64, # Type of the output sequences. To pad sequences with variable length strings, you can use object.
padding:str='pre', # 'pre' or 'post' pad either before or after each sequence.
truncating:str='pre', # 'pre' or 'post' remove values from sequences larger than maxlen, either at the beginning or at the end of the sequences.
padding_value:float=np.nan, # Value used for padding.
):
"Transforms an iterable with sequences into a 3d numpy array using padding or truncating sequences if necessary"
assert padding in ['pre', 'post']
assert truncating in ['pre', 'post']
assert is_iter(o)
if not is_array(o):
o = [to2darray(oi) for oi in o]
seq_len = maxlen or max(o, key=len).shape[-1]
result = np.full((len(o), o[0].shape[-2], seq_len), padding_value, dtype=dtype)
for i,values in enumerate(o):
if truncating == 'pre':
values = values[..., -seq_len:]
else:
values = values[..., :seq_len]
if padding == 'pre':
result[i, :, -values.shape[-1]:] = values
else:
result[i, :, :values.shape[-1]] = values
return result
# Cell
def match_seq_len(*arrays):
max_len = stack([x.shape[-1] for x in arrays]).max()
return [np.pad(x, pad_width=((0,0), (0,0), (max_len - x.shape[-1], 0)), mode='constant', constant_values=0) for x in arrays]
# Cell
def random_shuffle(o, random_state=None):
import sklearn
res = sklearn.utils.shuffle(o, random_state=random_state)
if isinstance(o, L): return L(list(res))
return res
# Cell
def cat2int(o):
from fastai.data.transforms import Categorize
from fastai.data.core import TfmdLists
cat = Categorize()
cat.setup(o)
return stack(TfmdLists(o, cat)[:])
# Cell
def cycle_dl(dl, show_progress_bar=True):
try:
if show_progress_bar:
for _ in progress_bar(dl): _
else:
for _ in dl: _
except KeyboardInterrupt:
pass
def cycle_dl_to_device(dl, show_progress_bar=True):
try:
if show_progress_bar:
for bs in progress_bar(dl): [b.to(default_device()) for b in bs]
else:
for bs in dl: [b.to(default_device()) for b in bs]
except KeyboardInterrupt:
pass
def cycle_dl_estimate(dl, iters=10):
iters = min(iters, len(dl))
iterator = iter(dl)
timer.start(False)
try:
for _ in range(iters): next(iterator)
except KeyboardInterrupt:
pass
t = timer.stop()
return (t/iters * len(dl)).total_seconds()
# Cell
def cache_data(o, slice_len=10_000, verbose=False):
start = 0
n_loops = (len(o) - 1) // slice_len + 1
pv(f'{n_loops} loops', verbose)
timer.start(False)
for i in range(n_loops):
o[slice(start,start + slice_len)]
if verbose and (i+1) % 10 == 0: print(f'{i+1:4} elapsed time: {timer.elapsed()}')
start += slice_len
pv(f'{i+1:4} total time : {timer.stop()}\n', verbose)
memmap2cache = cache_data
cache_memmap = cache_data
# Cell
def get_func_defaults(f):
import inspect
fa = inspect.getfullargspec(f)
if fa.defaults is None: return dict(zip(fa.args, [''] * (len(fa.args))))
else: return dict(zip(fa.args, [''] * (len(fa.args) - len(fa.defaults)) + list(fa.defaults)))
# Cell
def get_idx_from_df_col_vals(df, col, val_list):
return [df[df[col] == val].index[0] for val in val_list]
# Cell
def get_sublist_idxs(aList, bList):
"Get idxs that when applied to aList will return bList. aList must contain all values in bList"
sorted_aList = aList[np.argsort(aList)]
return np.argsort(aList)[np.searchsorted(sorted_aList, bList)]
# Cell
def flatten_list(l):
return [item for sublist in l for item in sublist]
# Cell
def display_pd_df(df, max_rows:Union[bool, int]=False, max_columns:Union[bool, int]=False):
if max_rows:
old_max_rows = pd.get_option('display.max_rows')
if max_rows is not True and isinstance(max_rows, Integral): pd.set_option('display.max_rows', max_rows)
else: pd.set_option('display.max_rows', df.shape[0])
if max_columns:
old_max_columns = pd.get_option('display.max_columns')
if max_columns is not True and isinstance(max_columns, Integral): pd.set_option('display.max_columns', max_columns)
else: pd.set_option('display.max_columns', df.shape[1])
display(df)
if max_rows: pd.set_option('display.max_rows', old_max_rows)
if max_columns: pd.set_option('display.max_columns', old_max_columns)
# Cell
def ttest(data1, data2, equal_var=False):
"Calculates t-statistic and p-value based on 2 sample distributions"
t_stat, p_value = ttest_ind(data1, data2, equal_var=equal_var)
return t_stat, np.sign(t_stat) * p_value
def kstest(data1, data2, alternative='two-sided', mode='auto', by_axis=None):
"""Performs the two-sample Kolmogorov-Smirnov test for goodness of fit.
Parameters
data1, data2: Two arrays of sample observations assumed to be drawn from a continuous distributions. Sample sizes can be different.
alternative: {‘two-sided’, ‘less’, ‘greater’}, optional. Defines the null and alternative hypotheses. Default is ‘two-sided’.
mode: {‘auto’, ‘exact’, ‘asymp’}, optional. Defines the method used for calculating the p-value.
by_axis (optional, int): for arrays with more than 1 dimension, the test will be run for each variable in that axis if by_axis is not None.
"""
if by_axis is None:
stat, p_value = ks_2samp(data1.flatten(), data2.flatten(), alternative=alternative, mode=mode)
return stat, np.sign(stat) * p_value
else:
assert data1.shape[by_axis] == data2.shape[by_axis], f"both arrays must have the same size along axis {by_axis}"
stats, p_values = [], []
for i in range(data1.shape[by_axis]):
d1 = np.take(data1, indices=i, axis=by_axis)
d2 = np.take(data2, indices=i, axis=by_axis)
stat, p_value = ks_2samp(d1.flatten(), d2.flatten(), alternative=alternative, mode=mode)
stats.append(stat)
p_values.append(np.sign(stat) * p_value)
return stats, p_values
def tscore(o):
if o.std() == 0: return 0
else: return np.sqrt(len(o)) * o.mean() / o.std()
# Cell
def ttest_tensor(a, b):
"differentiable pytorch function equivalent to scipy.stats.ttest_ind with equal_var=False"
# calculate standard errors
se1, se2 = torch.std(a)/np.sqrt(len(a)), torch.std(b)/np.sqrt(len(b))
# standard error on the difference between the samples
sed = torch.sqrt(se1**2.0 + se2**2.0)
# calculate the t statistic
t_stat = (torch.mean(a) - torch.mean(b)) / sed
return t_stat
# Cell
def pcc(a, b):
return pearsonr(a, b)[0]
def scc(a, b):
return spearmanr(a, b)[0]
a = np.random.normal(0.5, 1, 100)
b = np.random.normal(0.15, .5, 100)
pcc(a, b), scc(a, b)
# Cell
def remove_fn(fn, verbose=False):
"Removes a file (fn) if exists"
try:
os.remove(fn)
pv(f'{fn} file removed', verbose)
except OSError:
pv(f'{fn} does not exist', verbose)
pass
# Cell
def npsave(array_fn, array, verbose=True):
remove_fn(array_fn, verbose)
pv(f'saving {array_fn}...', verbose)
np.save(array_fn, array)
pv(f'...{array_fn} saved', verbose)
np_save = npsave
# Cell
def permute_2D(array, axis=None):
"Permute rows or columns in an array. This can be used, for example, in feature permutation"
if axis == 0: return array[np.random.randn(*array.shape).argsort(axis=0), np.arange(array.shape[-1])[None, :]]
elif axis == 1 or axis == -1: return array[np.arange(len(array))[:,None], np.random.randn(*array.shape).argsort(axis=1)]
return array[np.random.randn(*array.shape).argsort(axis=0), np.random.randn(*array.shape).argsort(axis=1)]
# Cell
def random_normal():
"Returns a number between -1 and 1 with a normal distribution"
while True:
o = np.random.normal(loc=0., scale=1/3)
if abs(o) <= 1: break
return o
def random_half_normal():
"Returns a number between 0 and 1 with a half-normal distribution"
while True:
o = abs(np.random.normal(loc=0., scale=1/3))
if o <= 1: break
return o
def random_normal_tensor(shape=1, device=None):
"Returns a tensor of a predefined shape between -1 and 1 with a normal distribution"
return torch.empty(shape, device=device).normal_(mean=0, std=1/3).clamp_(-1, 1)
def random_half_normal_tensor(shape=1, device=None):
"Returns a tensor of a predefined shape between 0 and 1 with a half-normal distribution"
return abs(torch.empty(shape, device=device).normal_(mean=0, std=1/3)).clamp_(0, 1)
# Cell
from matplotlib.backends.backend_agg import FigureCanvasAgg
def default_dpi():
DPI = plt.gcf().get_dpi()
plt.close()
return int(DPI)
def get_plot_fig(size=None, dpi=default_dpi()):
fig = plt.figure(figsize=(size / dpi, size / dpi), dpi=dpi, frameon=False) if size else plt.figure()
ax = fig.add_axes([0,0,1,1])
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
config = plt.gcf()
plt.close('all')
return config
def fig2buf(fig):
canvas = FigureCanvasAgg(fig)
fig.canvas.draw()
return np.asarray(canvas.buffer_rgba())[..., :3]
# Cell
def plot_scatter(x, y, deg=1):
linreg = linregress(x, y)
plt.scatter(x, y, label=f'R2:{linreg.rvalue:.2f}', color='lime', edgecolor='black', alpha=.5)
plt.plot(np.unique(x), np.poly1d(np.polyfit(x, y, deg))(np.unique(x)), color='r')
plt.legend(loc='best')
plt.show()
# Cell
def get_idxs(o, aList): return array([o.tolist().index(v) for v in aList])
# Cell
def apply_cmap(o, cmap):
o = toarray(o)
out = plt.get_cmap(cmap)(o)[..., :3]
out = tensor(out).squeeze(1)
return out.permute(0, 3, 1, 2)
# Cell
def torch_tile(a, n_tile, dim=0):
if ismin_torch("1.10") and dim == 0:
if isinstance(n_tile, tuple):
return torch.tile(a, n_tile)
return torch.tile(a, (n_tile,))
init_dim = a.size(dim)
repeat_idx = [1] * a.dim()
repeat_idx[dim] = n_tile
a = a.repeat(*(repeat_idx))
order_index = torch.cat([init_dim * torch.arange(n_tile) + i for i in range(init_dim)]).to(device=a.device)
return torch.index_select(a, dim, order_index)
# Cell
def to_tsfresh_df(ts):
r"""Prepares a time series (Tensor/ np.ndarray) to be used as a tsfresh dataset to allow feature extraction"""
ts = to3d(ts)
if isinstance(ts, np.ndarray):
ids = np.repeat(np.arange(len(ts)), ts.shape[-1]).reshape(-1,1)
joint_ts = ts.transpose(0,2,1).reshape(-1, ts.shape[1])
cols = ['id'] + np.arange(ts.shape[1]).tolist()
df = pd.DataFrame(np.concatenate([ids, joint_ts], axis=1), columns=cols)
elif isinstance(ts, torch.Tensor):
ids = torch_tile(torch.arange(len(ts)), ts.shape[-1]).reshape(-1,1)
joint_ts = ts.transpose(1,2).reshape(-1, ts.shape[1])
cols = ['id']+np.arange(ts.shape[1]).tolist()
df = pd.DataFrame(torch.cat([ids, joint_ts], dim=1).numpy(), columns=cols)
df['id'] = df['id'].astype(int)
df.reset_index(drop=True, inplace=True)
return df
# Cell
def pcorr(a, b):
return pearsonr(a, b)
def scorr(a, b):
corr = spearmanr(a, b)
return corr[0], corr[1]
# Cell
def torch_diff(t, lag=1, pad=True, append=0):
import torch.nn.functional as F
diff = t[..., lag:] - t[..., :-lag]
if pad:
return F.pad(diff, (lag, append))
else:
return diff
# Cell
def get_outliers_IQR(o, axis=None, quantile_range=(25.0, 75.0)):
if isinstance(o, torch.Tensor):
Q1 = torch.nanquantile(o, quantile_range[0]/100, axis=axis, keepdims=axis is not None)
Q3 = torch.nanquantile(o, quantile_range[1]/100, axis=axis, keepdims=axis is not None)
else:
Q1 = np.nanpercentile(o, quantile_range[0], axis=axis, keepdims=axis is not None)
Q3 = np.nanpercentile(o, quantile_range[1], axis=axis, keepdims=axis is not None)
IQR = Q3 - Q1
return Q1 - 1.5 * IQR, Q3 + 1.5 * IQR
def clip_outliers(o, axis=None):
min_outliers, max_outliers = get_outliers_IQR(o, axis=axis)
if isinstance(o, (np.ndarray, pd.core.series.Series)):
return np.clip(o, min_outliers, max_outliers)
elif isinstance(o, torch.Tensor):
return torch.clamp(o, min_outliers, max_outliers)
def get_percentile(o, percentile, axis=None):
if isinstance(o, torch.Tensor):
return torch.nanquantile(o, percentile/100, axis=axis, keepdims=axis is not None)
else:
return np.nanpercentile(o, percentile, axis=axis, keepdims=axis is not None)
def torch_clamp(o, min=None, max=None):
r"""Clamp torch.Tensor using 1 or multiple dimensions"""
if min is not None: o = torch.max(o, min)
if max is not None: o = torch.min(o, max)
return o
# Cell
def get_robustscale_params(o, by_var=True, percentiles=(25, 75), eps=1e-6):
assert o.ndim == 3
if by_var:
median = np.nanpercentile(o, 50, axis=(0,2), keepdims=True)
Q1 = np.nanpercentile(o, percentiles[0], axis=(0,2), keepdims=True)
Q3 = np.nanpercentile(o, percentiles[1], axis=(0,2), keepdims=True)
IQR = Q3 - Q1
else:
median = np.nanpercentile(o, .50)
Q1 = np.nanpercentile(o, percentiles[0])
Q3 = np.nanpercentile(o, percentiles[1])
IQR = Q3 - Q1
if eps is not None: IQR = np.maximum(IQR, eps)
return median, IQR
# Cell
def torch_slice_by_dim(t, index, dim=-1, **kwargs):
if not isinstance(index, torch.Tensor): index = torch.Tensor(index)
assert t.ndim == index.ndim, "t and index must have the same ndim"
index = index.long()
return torch.gather(t, dim, index, **kwargs)
# Cell
def torch_nanmean(o, dim=None, keepdim=False):
"""There's currently no torch.nanmean function"""
mask = torch.isnan(o)
if mask.any():
output = torch.from_numpy(np.asarray(np.nanmean(o.cpu().numpy(), axis=dim, keepdims=keepdim))).to(o.device)
if output.shape == mask.shape:
output[mask] = 0
return output
else:
return torch.mean(o, dim=dim, keepdim=keepdim) if dim is not None else torch.mean(o)
def torch_nanstd(o, dim=None, keepdim=False):
"""There's currently no torch.nanstd function"""
mask = torch.isnan(o)
if mask.any():
output = torch.from_numpy(np.asarray(np.nanstd(o.cpu().numpy(), axis=dim, keepdims=keepdim))).to(o.device)
if output.shape == mask.shape:
output[mask] = 1
return output
else:
return torch.std(o, dim=dim, keepdim=keepdim) if dim is not None else torch.std(o)
# Cell
def concat(*ls, dim=0):
"Concatenate tensors, arrays, lists, or tuples by a dimension"
if not len(ls): return []
it = ls[0]
if isinstance(it, torch.Tensor): return torch.cat(ls, dim=dim)
elif isinstance(it, np.ndarray): return np.concatenate(ls, axis=dim)
else:
res = np.concatenate(ls, axis=dim).tolist()
return retain_type(res, typ=type(it))
# Cell
def reduce_memory_usage(df):
start_memory = df.memory_usage().sum() / 1024**2
print(f"Memory usage of dataframe is {start_memory} MB")
for col in df.columns:
col_type = df[col].dtype
if col_type != 'object':
c_min = df[col].min()
c_max = df[col].max()
if str(col_type)[:3] == 'int':
if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
df[col] = df[col].astype(np.int8)
elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
df[col] = df[col].astype(np.int16)
elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
df[col] = df[col].astype(np.int32)
elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
df[col] = df[col].astype(np.int64)
else:
if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
df[col] = df[col].astype(np.float16)
elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
df[col] = df[col].astype(np.float32)
else:
pass
else:
df[col] = df[col].astype('category')
end_memory = df.memory_usage().sum() / 1024**2
print(f"Memory usage of dataframe after reduction {end_memory} MB")
print(f"Reduced by {100 * (start_memory - end_memory) / start_memory} % ")
return df
# Cell
def cls_name(o): return o.__class__.__name__
# Cell
def roll2d(o, roll1: Union[None, list, int] = None, roll2: Union[None, list, int] = None):
"""Rolls a 2D object on the indicated axis
This solution is based on https://stackoverflow.com/questions/20360675/roll-rows-of-a-matrix-independently
"""
assert o.ndim == 2, "roll2D can only be applied to 2d objects"
axis1, axis2 = np.ogrid[:o.shape[0], :o.shape[1]]
if roll1 is not None:
if isinstance(roll1, int): axis1 = axis1 - np.array(roll1).reshape(1,1)
else: axis1 = np.array(roll1).reshape(o.shape[0],1)
if roll2 is not None:
if isinstance(roll2, int): axis2 = axis2 - np.array(roll2).reshape(1,1)
else: axis2 = np.array(roll2).reshape(1,o.shape[1])
return o[axis1, axis2]
def roll3d(o, roll1: Union[None, list, int] = None, roll2: Union[None, list, int] = None, roll3: Union[None, list, int] = None):
"""Rolls a 3D object on the indicated axis
This solution is based on https://stackoverflow.com/questions/20360675/roll-rows-of-a-matrix-independently
"""
assert o.ndim == 3, "roll3D can only be applied to 3d objects"
axis1, axis2, axis3 = np.ogrid[:o.shape[0], :o.shape[1], :o.shape[2]]
if roll1 is not None:
if isinstance(roll1, int): axis1 = axis1 - np.array(roll1).reshape(1,1,1)
else: axis1 = np.array(roll1).reshape(o.shape[0],1,1)
if roll2 is not None:
if isinstance(roll2, int): axis2 = axis2 - np.array(roll2).reshape(1,1,1)
else: axis2 = np.array(roll2).reshape(1,o.shape[1],1)
if roll3 is not None:
if isinstance(roll3, int): axis3 = axis3 - np.array(roll3).reshape(1,1,1)
else: axis3 = np.array(roll3).reshape(1,1,o.shape[2])
return o[axis1, axis2, axis3]
def random_roll2d(o, axis=(), replace=False):
"""Rolls a 2D object on the indicated axis
This solution is based on https://stackoverflow.com/questions/20360675/roll-rows-of-a-matrix-independently
"""
assert o.ndim == 2, "roll2D can only be applied to 2d objects"
axis1, axis2 = np.ogrid[:o.shape[0], :o.shape[1]]
if 0 in axis:
axis1 = np.random.choice(np.arange(o.shape[0]), o.shape[0], replace).reshape(-1, 1)
if 1 in axis:
axis2 = np.random.choice(np.arange(o.shape[1]), o.shape[1], replace).reshape(1, -1)
return o[axis1, axis2]
def random_roll3d(o, axis=(), replace=False):
"""Randomly rolls a 3D object along the indicated axes
This solution is based on https://stackoverflow.com/questions/20360675/roll-rows-of-a-matrix-independently
"""
assert o.ndim == 3, "random_roll3d can only be applied to 3d objects"
axis1, axis2, axis3 = np.ogrid[:o.shape[0], :o.shape[1], :o.shape[2]]
if 0 in axis:
axis1 = np.random.choice(np.arange(o.shape[0]), o.shape[0], replace).reshape(-1, 1, 1)
if 1 in axis:
axis2 = np.random.choice(np.arange(o.shape[1]), o.shape[1], replace).reshape(1, -1, 1)
if 2 in axis:
axis3 = np.random.choice(np.arange(o.shape[2]), o.shape[2], replace).reshape(1, 1, -1)
return o[axis1, axis2, axis3]
def rotate_axis0(o, steps=1):
return o[np.arange(o.shape[0]) - steps]
def rotate_axis1(o, steps=1):
return o[:, np.arange(o.shape[1]) - steps]
def rotate_axis2(o, steps=1):
return o[:, :, np.arange(o.shape[2]) - steps]
# Cell
def chunks_calculator(shape, dtype='float32', n_bytes=1024**3):
"""Function to calculate chunks for a given size of n_bytes (default = 1024**3 == 1GB).
It guarantees > 50% of the chunk will be filled"""
X = np.random.rand(1, *shape[1:]).astype(dtype)
byts = get_size(X, return_str=False)
n = n_bytes // byts
if shape[0] / n <= 1: return False
remainder = shape[0] % n
if remainder / n < .5:
n_chunks = shape[0] // n
n += np.ceil(remainder / n_chunks).astype(int)
return (n, -1, -1)
# Cell
def is_memory_shared(a, b):
"Check if 2 array-like objects share memory"
assert is_array(a) and is_array(b)
return np.shares_memory(a, b)
# Cell
def assign_in_chunks(a, b, chunksize='auto', inplace=True, verbose=True):
"""Assigns values in b to an array-like object a using chunks to avoid memory overload.
The resulting a retains it's dtype and share it's memory.
a: array-like object
b: may be an integer, float, str, 'rand' (for random data), or another array like object.
chunksize: is the size of chunks. If 'auto' chunks will have around 1GB each.
"""
if b != 'rand' and not isinstance(b, (Iterable, Generator)):
a[:] = b
else:
shape = a.shape
dtype = a.dtype
if chunksize == "auto":
chunksize = chunks_calculator(shape, dtype)
chunksize = shape[0] if not chunksize else chunksize[0]
if verbose:
print(f'auto chunksize: {chunksize}')
for i in progress_bar(range((shape[0] - 1) // chunksize + 1), display=verbose, leave=False):
start, end = i * chunksize, min(shape[0], (i + 1) * chunksize)
if start >= shape[0]: break
if b == 'rand':
a[start:end] = np.random.rand(end - start, *shape[1:])
else:
if is_dask(b):
a[start:end] = b[start:end].compute()
else:
a[start:end] = b[start:end]
if not inplace: return a
# Cell
def create_array(shape, fname=None, path='./data', on_disk=True, dtype='float32', mode='r+', fill_value='rand', chunksize='auto', verbose=True, **kwargs):
"""
mode:
‘r’: Open existing file for reading only.
‘r+’: Open existing file for reading and writing.
‘w+’: Create or overwrite existing file for reading and writing.
‘c’: Copy-on-write: assignments affect data in memory, but changes are not saved to disk. The file on disk is read-only.
fill_value: 'rand' (for random numbers), int or float
chunksize = 'auto' to calculate chunks of 1GB, or any integer (for a given number of samples)
"""
if on_disk:
assert fname is not None, 'you must provide a fname (filename)'
path = Path(path)
if not fname.endswith('npy'): fname = f'{fname}.npy'
filename = path/fname
filename.parent.mkdir(parents=True, exist_ok=True)
# Save a small empty array
_temp_fn = path/'temp_X.npy'
np.save(_temp_fn, np.empty(0))
# Create & save file
arr = np.memmap(_temp_fn, dtype=dtype, mode='w+', shape=shape, **kwargs)
np.save(filename, arr)
del arr
os.remove(_temp_fn)
# Open file in selected mode
arr = np.load(filename, mmap_mode=mode)
else:
arr = np.empty(shape, dtype=dtype, **kwargs)
if fill_value != 0:
assign_in_chunks(arr, fill_value, chunksize=chunksize, inplace=True, verbose=verbose)
return arr
create_empty_array = partial(create_array, fill_value=0)
# Cell
import gzip
def np_save_compressed(arr, fname=None, path='./data', verbose=False, **kwargs):
assert fname is not None, 'you must provide a fname (filename)'
if fname.endswith('npy'): fname = f'{fname}.gz'
elif not fname.endswith('npy.gz'): fname = f'{fname}.npy.gz'
filename = Path(path)/fname
filename.parent.mkdir(parents=True, exist_ok=True)
f = gzip.GzipFile(filename, 'w', **kwargs)
np.save(file=f, arr=arr)
f.close()
pv(f'array saved to {filename}', verbose)
def np_load_compressed(fname=None, path='./data', **kwargs):
assert fname is not None, 'you must provide a fname (filename)'
if fname.endswith('npy'): fname = f'{fname}.gz'