forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_567.java
88 lines (79 loc) · 2.69 KB
/
_567.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
package com.fishercoder.solutions;
public class _567 {
public static class Solution1 {
/**
* credit: sliding window: https://discuss.leetcode.com/topic/87845/java-solution-sliding-window
*/
public boolean checkInclusion(String s1, String s2) {
int len1 = s1.length();
int len2 = s2.length();
if (len1 > len2) {
return false;
}
int[] count = new int[26];
for (int i = 0; i < len1; i++) {
count[s1.charAt(i) - 'a']++;
count[s2.charAt(i) - 'a']--;
}
if (allZeroes(count)) {
return true;
}
for (int i = len1; i < len2; i++) {
count[s2.charAt(i) - 'a']--;
count[s2.charAt(i - len1) - 'a']++;
if (allZeroes(count)) {
return true;
}
}
return false;
}
private boolean allZeroes(int[] count) {
for (int i : count) {
if (i != 0) {
return false;
}
}
return true;
}
}
public static class Solution2 {
/**
* A classic sliding window problem.
* I came up with below solution independently on 9/17/2021.
* <p>
* A few pointers that led me to the sliding window approach:
* 1. if it's a valid permutation, the substring from S2 must have equal length as of s1;
* 2. I don't want to repeatedly calculate each and every possible substring of s2, if s1 is really long, this could mean lots of redundant calculation.
* So sliding window to the rescue!
*/
public boolean checkInclusion(String s1, String s2) {
if (s1.length() > s2.length()) {
return false;
}
int[] count = new int[26];
for (char c : s1.toCharArray()) {
count[c - 'a']++;
}
for (int i = 0; i < s1.length(); i++) {
count[s2.charAt(i) - 'a']--;
}
for (int i = s1.length(), j = 0; i < s2.length(); i++, j++) {
if (isPermutation(count)) {
return true;
} else {
count[s2.charAt(j) - 'a']++;
count[s2.charAt(i) - 'a']--;
}
}
return isPermutation(count);
}
private boolean isPermutation(int[] count) {
for (int c : count) {
if (c != 0) {
return false;
}
}
return true;
}
}
}