-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathmodel.py
412 lines (306 loc) · 19.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
import data_utils
import time
import eval
import tensorflow as tf
class model:
"""Set of classes and methods for training the model and computing the ner and head selection loss"""
def __init__(self, config, emb_mtx, sess):
""""Initialize data"""
self.config = config
self.emb_mtx = emb_mtx
self.sess = sess
def getEvaluator(self):
if self.config.evaluation_method == "strict" and self.config.ner_classes == "BIO": # the most common metric
return eval.chunkEvaluator(self.config, ner_chunk_eval="boundaries_type",
rel_chunk_eval="boundaries_type")
elif self.config.evaluation_method == "boundaries" and self.config.ner_classes == "BIO": # s
return eval.chunkEvaluator(self.config, ner_chunk_eval="boundaries", rel_chunk_eval="boundaries")
elif self.config.evaluation_method == "relaxed" and self.config.ner_classes == "EC": # todo
return eval.relaxedChunkEvaluator(self.config, rel_chunk_eval="boundaries_type")
else:
raise ValueError(
'Valid evaluation methods : "strict" and "boundaries" in "BIO" mode and "relaxed" in "EC" mode .')
def train(self, train_data, operations, iter):
loss = 0
evaluator = self.getEvaluator()
start_time = time.time()
for x_train in data_utils.generator(train_data, operations.m_op, self.config, train=True):
_, val, predicted_ner, actual_ner, predicted_rel, actual_rel, _, m_train = self.sess.run(
[operations.train_step, operations.obj, operations.predicted_op_ner, operations.actual_op_ner, operations.predicted_op_rel, operations.actual_op_rel, operations.score_op_rel,
operations.m_op], feed_dict=x_train) # sess.run(embedding_init, feed_dict={embedding_placeholder: wordvectors})
if self.config.evaluation_method == "relaxed":
evaluator.add(predicted_ner, actual_ner, predicted_rel, actual_rel, m_train['BIO'])
else:
evaluator.add(predicted_ner, actual_ner, predicted_rel, actual_rel)
loss += val
print('****iter %d****' % (iter))
print('-------Train-------')
print('loss: %f ' % (loss))
if self.config.evaluation_method == "relaxed":
evaluator.computeInfoMacro()
else:
evaluator.printInfo()
elapsed_time = time.time() - start_time
print("Elapsed train time in sec:" + str(elapsed_time))
print()
def evaluate(self, eval_data, operations, set):
print('-------Evaluate on ' + set + '-------')
evaluator = self.getEvaluator()
for x_dev in data_utils.generator(eval_data, operations.m_op, self.config, train=False):
predicted_ner, actual_ner, predicted_rel, actual_rel, _, m_eval = self.sess.run(
[operations.predicted_op_ner, operations.actual_op_ner, operations.predicted_op_rel, operations.actual_op_rel, operations.score_op_rel, operations.m_op], feed_dict=x_dev)
if self.config.evaluation_method == "relaxed":
evaluator.add(predicted_ner, actual_ner, predicted_rel, actual_rel, m_eval['BIO'])
else:
evaluator.add(predicted_ner, actual_ner, predicted_rel, actual_rel)
if self.config.evaluation_method == "relaxed":
evaluator.computeInfoMacro(printScores=True)
if "other" in [x.lower() for x in self.config.dataset_set_ec_tags]: # if other class exists report score without "Other" class, see previous work on the CoNLL04
return evaluator.getMacroF1scoresNoOtherClass()[2]
else:
return evaluator.getMacroF1scores()[2]
else:
evaluator.printInfo()
return evaluator.getChunkedOverallAvgF1()
def get_train_op(self, obj):
import tensorflow as tf
if self.config.optimizer == 'Adam':
optim = tf.train.AdamOptimizer(self.config.learning_rate)
elif self.config.optimizer == 'Adagrad':
optim = tf.train.AdagradOptimizer(self.config.learning_rate)
elif self.config.optimizer == 'AdadeltaOptimizer':
optim = tf.train.AdadeltaOptimizer(self.config.learning_rate)
elif self.config.optimizer == 'GradientDescentOptimizer':
optim = tf.train.GradientDescentOptimizer(self.config.learning_rate)
if self.config.gradientClipping == True:
gvs = optim.compute_gradients(obj)
new_gvs = self.correctGradients(gvs)
capped_gvs = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in new_gvs]
train_step = optim.apply_gradients(capped_gvs)
else:
train_step = optim.minimize(obj)
return train_step
def correctGradients(self, gvs):
new_gvs = []
for grad, var in gvs:
# print (grad)
if grad == None:
grad = tf.zeros_like(var)
new_gvs.append((grad, var))
if len(gvs) != len(new_gvs):
print("gradient Error")
return new_gvs
def broadcasting(self, left, right):
left = tf.transpose(left, perm=[1, 0, 2])
left = tf.expand_dims(left, 3)
right = tf.transpose(right, perm=[0, 2, 1])
right = tf.expand_dims(right, 0)
B = left + right
B = tf.transpose(B, perm=[1, 0, 3, 2])
return B
def getNerScores(self, lstm_out, n_types=1, dropout_keep_in_prob=1):
u_a = tf.get_variable("u_typ", [self.config.hidden_size_lstm * 2, self.config.hidden_size_n1]) # [128 32]
v = tf.get_variable("v_typ", [self.config.hidden_size_n1, n_types]) # [32,1] or [32,10]
b_s = tf.get_variable("b_typ", [self.config.hidden_size_n1])
b_c = tf.get_variable("b_ctyp", [n_types])
mul = tf.einsum('aij,jk->aik', lstm_out, u_a) # [16 348 64] * #[64 32] = [16 348 32]
sum = mul + b_s
if self.config.activation == "tanh":
output = tf.nn.tanh(sum)
elif self.config.activation == "relu":
output = tf.nn.relu(sum)
if self.config.use_dropout == True:
output = tf.nn.dropout(output, keep_prob=dropout_keep_in_prob)
g = tf.einsum('aik,kp->aip', output, v) + b_c
return g
def getHeadSelectionScores(self, lstm_out, dropout_keep_in_prob=1):
u_a = tf.get_variable("u_a", [(self.config.hidden_size_lstm * 2) + self.config.label_embeddings_size, self.config.hidden_size_n1]) # [128 32]
w_a = tf.get_variable("w_a", [(self.config.hidden_size_lstm * 2) + self.config.label_embeddings_size, self.config.hidden_size_n1]) # [128 32]
v = tf.get_variable("v", [self.config.hidden_size_n1, len(self.config.dataset_set_relations)]) # [32,1] or [32,4]
b_s = tf.get_variable("b_s", [self.config.hidden_size_n1])
left = tf.einsum('aij,jk->aik', lstm_out, u_a) # [16 348 64] * #[64 32] = [16 348 32]
right = tf.einsum('aij,jk->aik', lstm_out, w_a) # [16 348 64] * #[64 32] = [16 348 32]
outer_sum = self.broadcasting(left, right) # [16 348 348 32]
outer_sum_bias = outer_sum + b_s
if self.config.activation == "tanh":
output = tf.tanh(outer_sum_bias)
elif self.config.activation == "relu":
output = tf.nn.relu(outer_sum_bias)
if self.config.use_dropout == True:
output = tf.nn.dropout(output, keep_prob=dropout_keep_in_prob)
output = tf.nn.dropout(output, keep_prob=dropout_keep_in_prob)
g = tf.einsum('aijk,kp->aijp', output, v)
g = tf.reshape(g, [tf.shape(g)[0], tf.shape(g)[1], tf.shape(g)[2] * len(self.config.dataset_set_relations)])
return g
def computeLoss(self, input_rnn, dropout_embedding_keep, dropout_lstm_keep, dropout_lstm_output_keep,
seqlen, dropout_fcl_ner_keep, ners_ids, dropout_fcl_rel_keep, is_train, scoring_matrix_gold, reuse=False):
with tf.variable_scope("loss_computation", reuse=reuse):
if self.config.use_dropout:
input_rnn = tf.nn.dropout(input_rnn, keep_prob=dropout_embedding_keep)
# input_rnn = tf.Print(input_rnn, [dropout_embedding_keep], 'embedding: ', summarize=1000)
for i in range(self.config.num_lstm_layers):
if self.config.use_dropout and i > 0:
input_rnn = tf.nn.dropout(input_rnn, keep_prob=dropout_lstm_keep)
# input_rnn = tf.Print(input_rnn, [dropout_lstm_keep], 'lstm: ', summarize=1000)
lstm_fw_cell = tf.contrib.rnn.BasicLSTMCell(self.config.hidden_size_lstm)
# Backward direction cell
lstm_bw_cell = tf.contrib.rnn.BasicLSTMCell(self.config.hidden_size_lstm)
#scope='BiLSTM' + str(i) 解决每层LSTM输入维度不一致问题
lstm_out, _ = tf.nn.bidirectional_dynamic_rnn(
cell_fw=lstm_fw_cell,
cell_bw=lstm_bw_cell,
inputs=input_rnn,
sequence_length=seqlen,
dtype=tf.float32, scope='BiLSTM' + str(i))
input_rnn = tf.concat(lstm_out, 2)
lstm_output = input_rnn
if self.config.use_dropout:
lstm_output = tf.nn.dropout(lstm_output, keep_prob=dropout_lstm_output_keep)
mask = tf.sequence_mask(seqlen, dtype=tf.float32)
ner_input = lstm_output
# loss= tf.Print(loss, [tf.shape(loss)], 'shape of loss is:') # same as scoring matrix ie, [1 59 590]
#实体识别
if self.config.ner_classes == "EC":
nerScores = self.getNerScores(ner_input, len(self.config.dataset_set_ec_tags),
dropout_keep_in_prob=dropout_fcl_ner_keep)
label_matrix = tf.get_variable(name="label_embeddings", dtype=tf.float32,
shape=[len(self.config.dataset_set_ec_tags),
self.config.label_embeddings_size])
elif self.config.ner_classes == "BIO":
nerScores = self.getNerScores(ner_input, len(self.config.dataset_set_bio_tags),
dropout_keep_in_prob=dropout_fcl_ner_keep)
label_matrix = tf.get_variable(name="label_embeddings", dtype=tf.float32,
shape=[len(self.config.dataset_set_bio_tags),
self.config.label_embeddings_size])
# nerScores = tf.Print(nerScores, [tf.shape(ners_ids), ners_ids, tf.shape(nerScores)], 'ners_ids: ', summarize=1000)
log_likelihood, transition_params = tf.contrib.crf.crf_log_likelihood(
nerScores, ners_ids, seqlen)
if self.config.ner_loss == "crf":
lossNER = -log_likelihood
predNers, viterbi_score = tf.contrib.crf.crf_decode(
nerScores, transition_params, seqlen)
elif self.config.ner_loss == "softmax":
lossNER = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=nerScores, labels=ners_ids)
predNers = tf.cast(tf.arg_max(nerScores, 2), tf.int32)
if self.config.label_embeddings_size > 0:
labels = tf.cond(is_train > 0, lambda: ners_ids, lambda: predNers)
label_embeddings = tf.nn.embedding_lookup(label_matrix, labels)
rel_input = tf.concat([lstm_output, label_embeddings], axis=2)
else:
rel_input = lstm_output
#关系抽取
rel_scores = self.getHeadSelectionScores(rel_input,
dropout_keep_in_prob=dropout_fcl_rel_keep)
lossREL = tf.nn.sigmoid_cross_entropy_with_logits(logits=rel_scores, labels=scoring_matrix_gold)
probas = tf.nn.sigmoid(rel_scores)
predictedRel = tf.round(probas)
return lossNER, lossREL, predNers, predictedRel, rel_scores
def run(self):
# shape = (batch size, max length of sentence, max length of word)
char_ids = tf.placeholder(tf.int32, shape=[None, None, None])
is_train = tf.placeholder(tf.int32)
# shape = (batch_size, max_length of sentence)
word_lengths = tf.placeholder(tf.int32, shape=[None, None])
embedding_ids = tf.placeholder(tf.int32, [None, None]) # [ batch_size,max_length of sentence ]
token_ids = tf.placeholder(tf.int32, [None, None]) # [ batch_size * max_sequence ]
entity_tags_ids = tf.placeholder(tf.int32, [None, None])
scoring_matrix_gold = tf.placeholder(tf.float32, [None, None, None]) # [ batch_size * max_sequence]
tokens = tf.placeholder(tf.string, [None, None]) # [ batch_size * max_sequence]
BIO = tf.placeholder(tf.string, [None, None]) # [ batch_size * max_sequence]
entity_tags = tf.placeholder(tf.string, [None, None]) # [ batch_size * max_sequence]
# classes = ...
seqlen = tf.placeholder(tf.int32, [None]) # [ batch_size ]
doc_ids = tf.placeholder(tf.string, [None]) # [ batch_size ]
dropout_embedding_keep = tf.placeholder(tf.float32, name="dropout_embedding_keep")
dropout_lstm_keep = tf.placeholder(tf.float32, name="dropout_lstm_keep")
dropout_lstm_output_keep = tf.placeholder(tf.float32, name="dropout_lstm_output_keep")
dropout_fcl_ner_keep = tf.placeholder(tf.float32, name="dropout_fcl_ner_keep")
dropout_fcl_rel_keep = tf.placeholder(tf.float32, name="dropout_fcl_rel_keep")
embedding_matrix = tf.get_variable(name="embeddings", shape=self.emb_mtx.shape,
initializer=tf.constant_initializer(self.emb_mtx), trainable=False)
#####char embeddings
# 1. get character embeddings
K = tf.get_variable(name="char_embeddings", dtype=tf.float32,
shape=[len(self.config.dataset_set_characters), self.config.char_embeddings_size])
# shape = (batch, sentence, word, dim of char embeddings)
char_embeddings = tf.nn.embedding_lookup(K, char_ids)
# 2. put the time dimension on axis=1 for dynamic_rnn
s = tf.shape(char_embeddings) # store old shape
char_embeddings_reshaped = tf.reshape(char_embeddings, shape=[-1, s[-2], self.config.char_embeddings_size])
word_lengths_reshaped = tf.reshape(word_lengths, shape=[-1])
char_hidden_size = self.config.hidden_size_char
# 3. bi lstm on chars
cell_fw = tf.contrib.rnn.BasicLSTMCell(char_hidden_size, state_is_tuple=True)
cell_bw = tf.contrib.rnn.BasicLSTMCell(char_hidden_size, state_is_tuple=True)
_, ((_, output_fw), (_, output_bw)) = tf.nn.bidirectional_dynamic_rnn(cell_fw=cell_fw, cell_bw=cell_bw,
inputs=char_embeddings_reshaped,
sequence_length=word_lengths_reshaped,
dtype=tf.float32)
# shape = (batch x sentence, 2 x char_hidden_size)
output = tf.concat([output_fw, output_bw], axis=-1)
# shape = (batch, sentence, 2 x char_hidden_size)
char_rep = tf.reshape(output, shape=[-1, s[1], 2 * char_hidden_size])
# concat char embeddings
word_embeddings = tf.nn.embedding_lookup(embedding_matrix, embedding_ids)
#词向量+字符向量
if self.config.use_chars == True:
input_rnn = tf.concat([word_embeddings, char_rep], axis=-1)
else:
input_rnn = word_embeddings
embeddings_input = input_rnn
#计算损失,预测值
lossNER, lossREL, predicted_entity_tags_ids, predictedRel, rel_scores = self.computeLoss(input_rnn,
dropout_embedding_keep,
dropout_lstm_keep,
dropout_lstm_output_keep, seqlen,
dropout_fcl_ner_keep,
entity_tags_ids, dropout_fcl_rel_keep,
is_train,
scoring_matrix_gold, reuse=False)
obj = tf.reduce_sum(lossNER) + tf.reduce_sum(lossREL)
# 生成对抗样本
raw_perturb = tf.gradients(obj, embeddings_input)[0] # [batch, L, dim]
normalized_per = tf.nn.l2_normalize(raw_perturb, dim=[1, 2])
perturb = self.config.alpha * tf.sqrt(tf.cast(tf.shape(input_rnn)[2], tf.float32)) * tf.stop_gradient(normalized_per)
perturb_inputs = embeddings_input + perturb #训练样本+对抗样本
#计算训练样本+对抗样本 的损失
lossNER_per, lossREL_per, _, _, _ = self.computeLoss(perturb_inputs,
dropout_embedding_keep,
dropout_lstm_keep,
dropout_lstm_output_keep, seqlen,
dropout_fcl_ner_keep,
entity_tags_ids, dropout_fcl_rel_keep,
is_train,
scoring_matrix_gold, reuse=True)
actualRel = tf.round(scoring_matrix_gold)
if self.config.use_adversarial == True:
obj += tf.reduce_sum(lossNER_per) + tf.reduce_sum(lossREL_per)
m = {}
m['isTrain'] = is_train
m['embeddingIds'] = embedding_ids
m['charIds'] = char_ids
m['tokensLens'] = word_lengths
m['entity_tags_ids'] = entity_tags_ids
m['scoringMatrixGold'] = scoring_matrix_gold
m['seqlen'] = seqlen
m['doc_ids'] = doc_ids
m['tokenIds'] = token_ids
m['dropout_embedding'] = dropout_embedding_keep
m['dropout_lstm'] = dropout_lstm_keep
m['dropout_lstm_output'] = dropout_lstm_output_keep
m['dropout_fcl_ner'] = dropout_fcl_ner_keep
m['dropout_fcl_rel'] = dropout_fcl_rel_keep
m['tokens'] = tokens
m['BIO'] = BIO
m['entity_tags'] = entity_tags
return obj, m, predicted_entity_tags_ids, entity_tags_ids, predictedRel, actualRel, rel_scores
class operations():
def __init__(self, train_step, obj, m_op, predicted_op_ner, actual_op_ner, predicted_op_rel, actual_op_rel, score_op_rel):
self.train_step = train_step
self.obj = obj
self.m_op = m_op
self.predicted_op_ner = predicted_op_ner
self.actual_op_ner = actual_op_ner
self.predicted_op_rel = predicted_op_rel
self.actual_op_rel = actual_op_rel
self.score_op_rel = score_op_rel