forked from google/snappy-start
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathelf_loader.c
730 lines (649 loc) · 24.3 KB
/
elf_loader.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
/*
* Copyright (c) 2012 The Native Client Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/*
* This file is based on nacl_bootstrap.c from Native Client:
* https://chromium.googlesource.com/native_client/src/native_client/+/287c0fffd7d3b7f38b887324f261ddb724d38f26/src/trusted/service_runtime/linux/nacl_bootstrap.c
*/
/*
* This is a standalone program that loads and runs the dynamic linker.
* This program itself must be linked statically. To keep it small, it's
* written to avoid all dependencies on libc and standard startup code.
* Hence, this should be linked using -nostartfiles. It must be compiled
* with -fno-stack-protector to ensure the compiler won't emit code that
* presumes some special setup has been done.
*
* On ARM, the compiler will emit calls to some libc functions, so we
* cannot link with -nostdlib. The functions it does use (memset and
* __aeabi_* functions for integer division) are sufficiently small and
* self-contained in ARM's libc.a that we don't have any problem using
* the libc definitions though we aren't using the rest of libc or doing
* any of the setup it might expect.
*/
#include <elf.h>
#include <fcntl.h>
#include <limits.h>
#include <link.h>
#include <stddef.h>
#include <stdint.h>
#include <sys/mman.h>
/*
* Get inline functions for system calls.
*/
static int my_errno;
#define SYS_ERRNO my_errno
#include "linux_syscall_support.h"
#define MAX_PHNUM 12
typedef uintptr_t __attribute__((may_alias)) stack_val_t;
/*
* These exact magic argument strings are recognized in check_r_debug_arg
* and check_reserved_at_zero_arg, below. Requiring the arguments to have
* those Xs as a template both simplifies our argument matching code and saves
* us from having to reformat the whole stack to find space for a string longer
* than the original argument.
*/
#define TEMPLATE_DIGITS "XXXXXXXXXXXXXXXX"
#define R_DEBUG_TEMPLATE_PREFIX "--r_debug=0x"
static const char kRDebugTemplate[] = R_DEBUG_TEMPLATE_PREFIX TEMPLATE_DIGITS;
static const size_t kRDebugPrefixLen = sizeof(R_DEBUG_TEMPLATE_PREFIX) - 1;
#define RESERVED_AT_ZERO_TEMPLATE_PREFIX "--reserved_at_zero=0x"
static const char kReservedAtZeroTemplate[] =
RESERVED_AT_ZERO_TEMPLATE_PREFIX TEMPLATE_DIGITS;
static const size_t kReservedAtZeroPrefixLen =
sizeof(RESERVED_AT_ZERO_TEMPLATE_PREFIX) - 1;
extern char RESERVE_TOP[];
extern char TEXT_START[];
/*
* We're not using <string.h> functions here, to avoid dependencies.
* In the x86 libc, even "simple" functions like memset and strlen can
* depend on complex startup code, because in newer libc
* implementations they are defined using STT_GNU_IFUNC.
*/
/*
* Some GCC versions are so clever that they recognize these simple loops
* as having the semantics of standard library functions and replace them
* with calls. That defeats the whole purpose, which is to avoid requiring
* any C library at all. Fortunately, this optimization can be disabled
* for all (following) functions in the file via #pragma.
*/
#if (defined(__GNUC__) && !defined(__clang__) && \
(__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)))
# pragma GCC optimize("-fno-tree-loop-distribute-patterns")
#endif
static void my_memcpy(void *dest, const void *src, size_t size) {
char *d = dest;
const char *s = src;
while (size > 0) {
*d++ = *s++;
size--;
}
}
static void my_bzero(void *buf, size_t n) {
char *p = buf;
while (n-- > 0)
*p++ = 0;
}
static size_t my_strlen(const char *s) {
size_t n = 0;
while (*s++ != '\0')
++n;
return n;
}
static int my_strcmp(const char *a, const char *b) {
while (*a == *b) {
if (*a == '\0')
return 0;
++a;
++b;
}
return (int) (unsigned char) *a - (int) (unsigned char) *b;
}
/*
* We're avoiding libc, so no printf. The only nontrivial thing we need
* is rendering numbers, which is, in fact, pretty trivial.
* bufsz of course must be enough to hold INT_MIN in decimal.
*/
static void iov_int_string(int value, struct kernel_iovec *iov,
char *buf, size_t bufsz) {
char *p = &buf[bufsz];
int negative = value < 0;
if (negative)
value = -value;
do {
--p;
*p = "0123456789"[value % 10];
value /= 10;
} while (value != 0);
if (negative)
*--p = '-';
iov->iov_base = p;
iov->iov_len = &buf[bufsz] - p;
}
#define STRING_IOV(string_constant, cond) \
{ (void *) string_constant, cond ? (sizeof(string_constant) - 1) : 0 }
__attribute__((noreturn)) static void fail(const char *filename,
const char *message,
const char *item1, int value1,
const char *item2, int value2) {
char valbuf1[32];
char valbuf2[32];
struct kernel_iovec iov[] = {
STRING_IOV("bootstrap_helper: ", 1),
{ (void *) filename, my_strlen(filename) },
STRING_IOV(": ", 1),
{ (void *) message, my_strlen(message) },
{ (void *) item1, item1 == NULL ? 0 : my_strlen(item1) },
STRING_IOV("=", item1 != NULL),
{ NULL, 0 }, /* iov[6] */
STRING_IOV(", ", item1 != NULL && item2 != NULL),
{ (void *) item2, item2 == NULL ? 0 : my_strlen(item2) },
STRING_IOV("=", item2 != NULL),
{ NULL, 0 }, /* iov[10] */
{ "\n", 1 },
};
const int niov = sizeof(iov) / sizeof(iov[0]);
if (item1 != NULL)
iov_int_string(value1, &iov[6], valbuf1, sizeof(valbuf1));
if (item2 != NULL)
iov_int_string(value2, &iov[10], valbuf2, sizeof(valbuf2));
sys_writev(2, iov, niov);
sys_exit_group(2);
while (1) *(volatile int *) 0 = 0; /* Crash. */
}
static int my_open(const char *file, int oflag) {
int result = sys_open(file, oflag, 0);
if (result < 0)
fail(file, "Cannot open ELF file! ", "errno", my_errno, NULL, 0);
return result;
}
static void my_pread(const char *file, const char *fail_message,
int fd, void *buf, size_t bufsz, uintptr_t pos) {
ssize_t result = sys_pread64(fd, buf, bufsz, pos);
if (result < 0)
fail(file, fail_message, "errno", my_errno, NULL, 0);
if ((size_t) result != bufsz)
fail(file, fail_message, "read count", result, NULL, 0);
}
static uintptr_t my_mmap_simple(uintptr_t address, size_t size,
int prot, int flags, int fd, uintptr_t pos) {
#if defined(__NR_mmap2)
void *result = sys_mmap2((void *) address, size, prot, flags, fd, pos >> 12);
#else
void *result = sys_mmap((void *) address, size, prot, flags, fd, pos);
#endif
return (uintptr_t) result;
}
static uintptr_t my_mmap(const char *file,
const char *segment_type, unsigned int segnum,
uintptr_t address, size_t size,
int prot, int flags, int fd, uintptr_t pos) {
uintptr_t result = my_mmap_simple(address, size, prot, flags, fd, pos);
if ((void *) result == MAP_FAILED)
fail(file, "Failed to map segment! ",
segment_type, segnum, "errno", my_errno);
return result;
}
static void my_mprotect(const char *file, unsigned int segnum,
uintptr_t address, size_t size, int prot) {
if (sys_mprotect((void *) address, size, prot) < 0)
fail(file, "Failed to mprotect segment hole! ",
"segment", segnum, "errno", my_errno);
}
static int prot_from_phdr(const ElfW(Phdr) *phdr) {
int prot = 0;
if (phdr->p_flags & PF_R)
prot |= PROT_READ;
if (phdr->p_flags & PF_W)
prot |= PROT_WRITE;
if (phdr->p_flags & PF_X)
prot |= PROT_EXEC;
return prot;
}
static uintptr_t round_up(uintptr_t value, uintptr_t size) {
return (value + size - 1) & -size;
}
static uintptr_t round_down(uintptr_t value, uintptr_t size) {
return value & -size;
}
/*
* Handle the "bss" portion of a segment, where the memory size
* exceeds the file size and we zero-fill the difference. For any
* whole pages in this region, we over-map anonymous pages. For the
* sub-page remainder, we zero-fill bytes directly.
*/
static void handle_bss(const char *file,
unsigned int segnum, const ElfW(Phdr) *ph,
ElfW(Addr) load_bias, size_t pagesize) {
if (ph->p_memsz > ph->p_filesz) {
ElfW(Addr) file_end = ph->p_vaddr + load_bias + ph->p_filesz;
ElfW(Addr) file_page_end = round_up(file_end, pagesize);
ElfW(Addr) page_end = round_up(ph->p_vaddr + load_bias +
ph->p_memsz, pagesize);
if (page_end > file_page_end)
my_mmap(file, "bss segment", segnum,
file_page_end, page_end - file_page_end,
prot_from_phdr(ph), MAP_ANON | MAP_PRIVATE | MAP_FIXED, -1, 0);
if (file_page_end > file_end && (ph->p_flags & PF_W))
my_bzero((void *) file_end, file_page_end - file_end);
}
}
/*
* Open an ELF file and load it into memory.
*/
static ElfW(Addr) load_elf_file(const char *filename,
size_t pagesize,
ElfW(Addr) *out_base,
ElfW(Addr) *out_phdr,
ElfW(Addr) *out_phnum,
const char **out_interp) {
int fd = my_open(filename, O_RDONLY);
ElfW(Ehdr) ehdr;
my_pread(filename, "Failed to read ELF header from file! ",
fd, &ehdr, sizeof(ehdr), 0);
if (ehdr.e_ident[EI_MAG0] != ELFMAG0 ||
ehdr.e_ident[EI_MAG1] != ELFMAG1 ||
ehdr.e_ident[EI_MAG2] != ELFMAG2 ||
ehdr.e_ident[EI_MAG3] != ELFMAG3 ||
ehdr.e_version != EV_CURRENT ||
ehdr.e_ehsize != sizeof(ehdr) ||
ehdr.e_phentsize != sizeof(ElfW(Phdr)))
fail(filename, "File has no valid ELF header!", NULL, 0, NULL, 0);
switch (ehdr.e_machine) {
#if defined(__i386__)
case EM_386:
#elif defined(__x86_64__)
case EM_X86_64:
#elif defined(__arm__)
case EM_ARM:
#elif defined(__mips__)
case EM_MIPS:
#else
# error "Don't know the e_machine value for this architecture!"
#endif
break;
default:
fail(filename, "ELF file has wrong architecture! ",
"e_machine", ehdr.e_machine, NULL, 0);
break;
}
ElfW(Phdr) phdr[MAX_PHNUM];
if (ehdr.e_phnum > sizeof(phdr) / sizeof(phdr[0]) || ehdr.e_phnum < 1)
fail(filename, "ELF file has unreasonable ",
"e_phnum", ehdr.e_phnum, NULL, 0);
my_pread(filename, "Failed to read program headers from ELF file! ",
fd, phdr, sizeof(phdr[0]) * ehdr.e_phnum, ehdr.e_phoff);
size_t i = 0;
while (i < ehdr.e_phnum && phdr[i].p_type != PT_LOAD)
++i;
if (i == ehdr.e_phnum)
fail(filename, "ELF file has no PT_LOAD header!",
NULL, 0, NULL, 0);
/*
* ELF requires that PT_LOAD segments be in ascending order of p_vaddr.
* Find the last one to calculate the whole address span of the image.
*/
const ElfW(Phdr) *first_load = &phdr[i];
const ElfW(Phdr) *last_load = &phdr[ehdr.e_phnum - 1];
while (last_load > first_load && last_load->p_type != PT_LOAD)
--last_load;
size_t span = last_load->p_vaddr + last_load->p_memsz - first_load->p_vaddr;
/*
* Map the first segment and reserve the space used for the rest and
* for holes between segments.
*/
uintptr_t load_addr = round_down(first_load->p_vaddr, pagesize);
const uintptr_t mapping = my_mmap(filename, "segment", first_load - phdr,
load_addr,
span, prot_from_phdr(first_load),
MAP_PRIVATE, fd,
round_down(first_load->p_offset, pagesize));
if (ehdr.e_type == ET_EXEC && mapping != load_addr)
fail(filename,
"Could not reserve required address range for non-relocatable "
"(ET_EXEC) executable",
NULL, 0, NULL, 0);
const ElfW(Addr) load_bias = mapping - round_down(first_load->p_vaddr,
pagesize);
if (first_load->p_offset > ehdr.e_phoff ||
first_load->p_filesz < ehdr.e_phoff + (ehdr.e_phnum * sizeof(ElfW(Phdr))))
fail(filename, "First load segment of ELF file does not contain phdrs!",
NULL, 0, NULL, 0);
handle_bss(filename, first_load - phdr, first_load, load_bias, pagesize);
ElfW(Addr) last_end = first_load->p_vaddr + load_bias + first_load->p_memsz;
/*
* Map the remaining segments, and protect any holes between them.
*/
const ElfW(Phdr) *ph;
for (ph = first_load + 1; ph <= last_load; ++ph) {
if (ph->p_type == PT_LOAD) {
ElfW(Addr) last_page_end = round_up(last_end, pagesize);
last_end = ph->p_vaddr + load_bias + ph->p_memsz;
ElfW(Addr) start = round_down(ph->p_vaddr + load_bias, pagesize);
ElfW(Addr) end = round_up(last_end, pagesize);
if (start > last_page_end)
my_mprotect(filename,
ph - phdr, last_page_end, start - last_page_end, PROT_NONE);
my_mmap(filename, "segment", ph - phdr,
start, end - start,
prot_from_phdr(ph), MAP_PRIVATE | MAP_FIXED, fd,
round_down(ph->p_offset, pagesize));
handle_bss(filename, ph - phdr, ph, load_bias, pagesize);
}
}
if (out_interp != NULL) {
/*
* Find the PT_INTERP header, if there is one.
*/
for (i = 0; i < ehdr.e_phnum; ++i) {
if (phdr[i].p_type == PT_INTERP) {
/*
* The PT_INTERP isn't really required to sit inside the first
* (or any) load segment, though it normally does. So we can
* easily avoid an extra read in that case.
*/
if (phdr[i].p_offset >= first_load->p_offset &&
phdr[i].p_filesz <= first_load->p_filesz) {
*out_interp = (const char *) (phdr[i].p_vaddr + load_bias);
} else {
static char interp_buffer[PATH_MAX + 1];
if (phdr[i].p_filesz >= sizeof(interp_buffer)) {
fail(filename, "ELF file has unreasonable PT_INTERP size! ",
"segment", i, "p_filesz", phdr[i].p_filesz);
}
my_pread(filename, "Cannot read PT_INTERP segment contents!",
fd, interp_buffer, phdr[i].p_filesz, phdr[i].p_offset);
*out_interp = interp_buffer;
}
break;
}
}
}
sys_close(fd);
if (out_base != NULL)
*out_base = load_bias;
if (out_phdr != NULL)
*out_phdr = (ehdr.e_phoff - first_load->p_offset +
first_load->p_vaddr + load_bias);
if (out_phnum != NULL)
*out_phnum = ehdr.e_phnum;
return ehdr.e_entry + load_bias;
}
/*
* Replace template digits with a fill value. This function places the
* bottom num_digits of the hex representation of fill into the string
* pointed to by start.
*/
static void fill_in_template_digits(char *start, size_t num_digits,
uintptr_t fill) {
while (num_digits-- > 0) {
start[num_digits] = "0123456789abcdef"[fill & 0xf];
fill >>= 4;
}
if (fill != 0)
fail("fill_in_template_digits",
"fill has significant digits beyond num_digits", NULL, 0, NULL, 0);
}
/*
* GDB looks for this symbol name when it cannot find PT_DYNAMIC->DT_DEBUG.
* We don't have a PT_DYNAMIC, so it will find this. Now all we have to do
* is arrange for this space to be filled in with the dynamic linker's
* _r_debug contents after they're initialized. That way, attaching GDB to
* this process or examining its core file will find the PIE we loaded, the
* dynamic linker, and all the shared libraries, making debugging pleasant.
*/
struct r_debug _r_debug __attribute__((nocommon, section(".r_debug")));
/*
* If the argument matches the kRDebugTemplate string, then replace
* the 16 Xs with the hexadecimal address of our _r_debug variable.
*/
static int check_r_debug_arg(char *arg) {
if (my_strcmp(arg, kRDebugTemplate) == 0) {
fill_in_template_digits(arg + kRDebugPrefixLen,
sizeof(TEMPLATE_DIGITS) - 1,
(uintptr_t) &_r_debug);
return 1;
}
return 0;
}
/*
* If the argument matches the kReservedAtZeroTemplate string, then replace
* the 8 Xs with the hexadecimal representation of the amount of
* prereserved memory.
*/
static int check_reserved_at_zero_arg(char *arg) {
if (my_strcmp(arg, kReservedAtZeroTemplate) == 0) {
fill_in_template_digits(arg + kReservedAtZeroPrefixLen,
sizeof(TEMPLATE_DIGITS) - 1,
(uintptr_t) RESERVE_TOP);
return 1;
}
return 0;
}
static void ReserveBottomPages(size_t pagesize) {
uintptr_t page_addr;
uintptr_t mmap_rval;
/*
* Attempt to protect low memory from zero to the code start address.
*
* It is normal for mmap() calls to fail with EPERM if the indicated
* page is less than vm.mmap_min_addr (see /proc/sys/vm/mmap_min_addr),
* or with EACCES under SELinux if less than CONFIG_LSM_MMAP_MIN_ADDR
* (64k). Sometimes, mmap() calls may fail with EINVAL if the
* starting address is 0. Hence, we adaptively move the bottom of the
* region up a page at a time until we succeed in getting a reservation.
*/
for (page_addr = 0;
page_addr < (uintptr_t) TEXT_START;
page_addr += pagesize) {
mmap_rval = my_mmap_simple(page_addr,
(uintptr_t) TEXT_START - page_addr,
PROT_NONE,
MAP_PRIVATE | MAP_FIXED |
MAP_ANONYMOUS | MAP_NORESERVE,
-1, 0);
if (page_addr == mmap_rval) {
/* Success; the pages are now protected. */
break;
} else if (MAP_FAILED == (void *) mmap_rval &&
(EPERM == my_errno || EACCES == my_errno ||
EINVAL == my_errno)) {
/*
* Normal; this is an invalid page for this process and
* doesn't need to be protected. Continue with next page.
*/
} else {
fail("ReserveBottomPages", "NULL pointer guard page ",
"errno", my_errno, "address", (int) page_addr);
}
}
}
static char *copy_stack_string(uintptr_t *stack_alloc, char *string) {
size_t length = my_strlen(string);
*stack_alloc -= length + 1;
char *dest = (char *) *stack_alloc;
my_memcpy(dest, string, length + 1);
return dest;
}
static void copy_stack_strings(uintptr_t *stack_alloc, char **strings,
char **strings_end) {
char **p;
for (p = strings_end; p > strings; ) {
--p;
*p = copy_stack_string(stack_alloc, *p);
}
}
/*
* This is the main loading code. It's called with the starting stack pointer.
* This points to a sequence of pointer-size words:
* [0] argc
* [1..argc] argv[0..argc-1]
* [1+argc] NULL
* [2+argc..] envp[0..]
* NULL
* auxv[0].a_type
* auxv[1].a_un.a_val
* ...
*
* This returns the address of the new stack pointer.
*
* argv[0] is the uninteresting name of this bootstrap program. argv[1] is
* the real program file name we'll open, and also the argv[0] for that
* program. We need to modify argc, move argv[1..] back to the argv[0..]
* position, and also examine and modify the auxiliary vector on the stack.
*/
uintptr_t do_load(stack_val_t *stack) {
size_t i;
int argn;
int argc = stack[0];
char **argv = (char **) &stack[1];
const char *program = argv[1];
if (argc < 2)
fail("Usage", "PROGRAM ARGS...", NULL, 0, NULL, 0);
/* Drop the first argument. */
--argc;
++argv;
++stack;
stack[0] = argc;
/* Find the env vars and the auxiliary vector (auxv). */
char **envp = &argv[argc + 1];
char **envp_end = envp;
while (*envp_end != NULL)
++envp_end;
ElfW(auxv_t) *auxv = (ElfW(auxv_t) *) (envp_end + 1);
ElfW(auxv_t) *auxv_end = auxv;
while (auxv_end->a_type != AT_NULL)
++auxv_end;
/* Allocate a new stack. */
/* TODO: Use a larger stack when ptracer.cc handles it efficiently. */
size_t stack_size = 128 << 10;
uintptr_t new_stack = my_mmap_simple(0, stack_size, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_PRIVATE, -1, 0);
if ((void *) new_stack == MAP_FAILED)
fail("Error", "Failed to map stack", NULL, 0, NULL, 0);
/* Map a guard page. */
uintptr_t mapping = my_mmap_simple(new_stack, 0x1000, PROT_NONE,
MAP_ANON | MAP_PRIVATE | MAP_FIXED,
-1, 0);
if (mapping != new_stack)
fail("Error", "Failed to map guard page", NULL, 0, NULL, 0);
uintptr_t stack_alloc = new_stack + stack_size;
/* Copy data to the new stack. */
copy_stack_strings(&stack_alloc, envp, envp_end);
copy_stack_strings(&stack_alloc, argv, &argv[argc]);
size_t stack_words = (stack_val_t *) (auxv_end + 1) - stack;
stack_alloc -= sizeof(stack_val_t) * stack_words;
for (i = 0; i < stack_words; ++i)
((stack_val_t *) stack_alloc)[i] = stack[i];
ElfW(auxv_t) *new_auxv =
(ElfW(auxv_t) *) ((uintptr_t) auxv - (uintptr_t) stack + stack_alloc);
/*
* If an argument is the kRDebugTemplate or kReservedAtZeroTemplate
* string, then we'll modify that argument string in place to specify
* the address of our _r_debug structure (for kRDebugTemplate) or the
* amount of prereserved address space (for kReservedAtZeroTemplate).
* We expect that the arguments matching the templates are the first
* arguments provided.
*/
for (argn = 1; argn < argc; ++argn) {
if (!check_r_debug_arg(argv[argn]) &&
!check_reserved_at_zero_arg(argv[argn]))
break;
}
/*
* Record the auxv entries that are specific to the file loaded.
* The incoming entries point to our own static executable.
*/
ElfW(auxv_t) *av_base = NULL;
ElfW(auxv_t) *av_entry = NULL;
ElfW(auxv_t) *av_phdr = NULL;
ElfW(auxv_t) *av_phnum = NULL;
size_t pagesize = 0;
ElfW(auxv_t) *av;
for (av = new_auxv;
(av_base == NULL || av_entry == NULL || av_phdr == NULL ||
av_phnum == NULL || pagesize == 0);
++av) {
switch (av->a_type) {
case AT_NULL:
fail("startup", "\
Failed to find AT_BASE, AT_ENTRY, AT_PHDR, AT_PHNUM, or AT_PAGESZ!",
NULL, 0, NULL, 0);
/*NOTREACHED*/
break;
case AT_BASE:
av_base = av;
break;
case AT_ENTRY:
av_entry = av;
break;
case AT_PAGESZ:
pagesize = av->a_un.a_val;
break;
case AT_PHDR:
av_phdr = av;
break;
case AT_PHNUM:
av_phnum = av;
break;
/* Disable access to the VDSO. */
case AT_SYSINFO:
case AT_SYSINFO_EHDR:
av->a_type = AT_IGNORE;
break;
}
}
ReserveBottomPages(pagesize);
/* Load the program and point the auxv elements at its phdrs and entry. */
const char *interp = NULL;
av_entry->a_un.a_val = load_elf_file(program,
pagesize,
NULL,
&av_phdr->a_un.a_val,
&av_phnum->a_un.a_val,
&interp);
ElfW(Addr) entry = av_entry->a_un.a_val;
if (interp != NULL) {
/*
* There was a PT_INTERP, so we have a dynamic linker to load.
*/
entry = load_elf_file(interp, pagesize, &av_base->a_un.a_val,
NULL, NULL, NULL);
}
((stack_val_t *) stack_alloc)[-1] = entry;
return stack_alloc;
}
/*
* We have to define the actual entry point code (_start) in assembly for
* each machine. The kernel startup protocol is not compatible with the
* normal C function calling convention. Here, we call do_load (above)
* using the normal C convention as per the ABI, with the starting stack
* pointer as its argument; switch to the new stack; and finally, jump to
* the dynamic linker's entry point address.
*/
#if defined(__x86_64__)
asm(".pushsection \".text\",\"ax\",@progbits\n"
".globl _start\n"
".type _start,@function\n"
"_start:\n"
"xorq %rbp, %rbp\n"
"movq %rsp, %rdi\n" /* Argument: stack block. */
"andq $-16, %rsp\n" /* Align the stack as per ABI. */
"call do_load\n"
"movq %rax, %rsp\n" /* Switch to new stack */
"jmp *-8(%rax)\n" /* Jump to the entry point. */
".popsection"
);
#else
# error "Need _start code for this architecture!"
#endif
#if defined(__arm__)
/*
* We may bring in __aeabi_* functions from libgcc that in turn
* want to call raise.
*/
int raise(int sig) {
return sys_kill(sys_getpid(), sig);
}
#endif