-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathIHT.c
329 lines (280 loc) · 8.79 KB
/
IHT.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
// ConsoleApplication6.cpp : Defines the entry point for the console application.
//
#include "stdio.h"
#include "stdlib.h"
#include "math.h"
#define N 256
#define M 64
#define number_of_iteration 100 //Number of Iteration is usually higher in IHT
#define sparsity 4
int swap(int *xp, int *yp);
int bubbleSort(int *arr, int n);
int matMul(float *mat1, float *mat2, float *result, int m, int n, int q);
int transpose(float *mat1, float *mat2, int m, int n);
int matSUB_M(float *mat1, float *mat2, float *result, int m, int n);
int matADD_N(float *mat1, float *mat2, float *result, int m, int n);
//int print(float *mat, int m, int n);
int sorted_order(float *arr, int *sorted_ind, int n, int k);
int matMul_N_in_Middle(float *mat1, float *mat2, float *result, int m, int n, int q);
int matMul_M_in_Middle(float *mat1, float *mat2, float *result, int m, int n, int q);
float SNR(float *a, float *b, int Length);
float MSE(float *a, float *b, int Length);
int main()
{
float A[M][N], x[N], y[M], x_hat[N];
float step = 0.5;
int i,j;
for (i = 0; i < M; i++)
for (j = 0; j < N; j++)
A[i][j] =2*(rand() % 2)-1;
for (i = 0; i < N; i++) // only 6 out of N coeff of x are nonzero
x[i] = 0;
/* for i = 1:iteration
g = A'*(r);
w = (g'*g)/(g'*(A'*A)*g);
x = xnew + w*g;
[v, s] = sort(abs(x), 'descend');
T = s(1:k);
xnew(:) = 0;
xnew(T) = x(T);
r = y - A*xnew;
end */
x[1] = 5;
x[6] = (float)(23);
x[2] = (float)(12);
//printf("x:\n");
//print((float *)x, 1, N);
matMul_N_in_Middle((float *)A, (float *)x, y, M, N, 1);
//sorted_order((float *)x, (*)ind, 5, 5);
//print_int((*)ind, 5, 1);
//IHT((float *)A, (float *)y, (float *)x_hat, M, N, 5, number_of_iterations, 0.001);
float xnew[N], xnew_Intermediate[N], r[M], r_Intermediate[M];
for (j = 0; j < N; j++)//xnew = zeros(N, 1);
xnew[j] = 0;
float At[N][M];
float A_in_xnew[N];
float xnew_in_A[N];
transpose((float *)A, (float *)At, M, N);
matMul((float *)A, (float *)xnew, (float *)r_Intermediate, M, N, 1);//r = y - A*xnew;
matSUB_M((float *)y, (float *)r_Intermediate, (float *)r, M, 1);//r = y - A*xnew;
for (i = 0; i < N; i++)
{
xnew_in_A[i] = 0;
A_in_xnew[i] = 0;
}
int ii,iii;
printf("Begining of Algorithms:");
//for (iii=0;iii<10;iii++)
for (ii = 0; ii < number_of_iteration; ii++)
{
matMul_M_in_Middle((float *)At, (float *)r, (float *)xnew_Intermediate, N, M, 1); //A*g
/* g = A'*(r);
w = (g'*g)/(g'*(A'*A)*g);
x = xnew + w*g;
*/
matMul_N_in_Middle((float *)xnew_Intermediate, (float *)At, xnew_in_A, 1, N, M); //g'*At
matMul_N_in_Middle((float *)A, (float *)xnew_Intermediate, (float *)A_in_xnew,M, N, 1); //A*g
float step =0;
float Num = 0; float Denum = 0;
for (i = 0; i < N; i++)
{
Num += (xnew_Intermediate[i] * xnew_Intermediate[i]);
Denum += (A_in_xnew[i] * xnew_in_A[i]);
}
step = Num / Denum;
matMul((float *)xnew_Intermediate, &step, (float *)xnew_Intermediate, N, 1, 1);
matADD_N((float *)xnew, (float *)xnew_Intermediate, (float *)x, N, 1);//x = xnew + w*A'*(r);
int ind[N];
sorted_order((float *)x, (int *)ind, N, sparsity);//[v, s] = sort(abs(x), 'descend');
for (j = 0; j < N; j++)//xnew = zeros(N, 1);
{
xnew[j] = 0;
}
for (j = 0; j < sparsity; j++)//xnew(T) = x(T);
{
xnew[ind[j]] = x[ind[j]];
}
matMul_N_in_Middle((float *)A, (float *)xnew, (float *)r_Intermediate, M, N, 1);//r = y - A*xnew;
matSUB_M((float *)y, (float *)r_Intermediate, (float *)r, M, 1);//r = y - A*xnew;
}
printf("End of Algorithms:");
SNR(x,xnew,N);
return 0;
}
int swap(int *xp, int *yp)
{
int temp = *xp;
*xp = *yp;
*yp = temp;
return(0);
}
int bubbleSort(int *arr, int n)
{
int i, j;
for (i = 0; i < n - 1; i++)
// Last i elements are already in place
for (j = 0; j < n - i - 1; j++)
if (arr[j] > arr[j + 1])
swap(&arr[j], &arr[j + 1]);
return(0);
}
int matMul(float *mat1, float *mat2, float *result, int m, int n, int q) {
//Multiplication for Mat1_(m*n) * Mat2_(n*k)
// M,N and K are dimentions of matrices
// Output is going to sit in the matrix that result represents here
float sum; int i,j,k;
for (i = 0; i < m; i++) {
for (j = 0; j < q; j++) {
sum = 0;
for (k = 0; k < n; k++) {
sum = sum + *(mat1 + i*n + k) * *(mat2 + k*q + j);
}
*(result + i*q + j) = sum;
}
}
return(0);
}
int matSUB_M(float *mat1, float *mat2, float *result, int m, int n) {
//Calculates mat1_m*n - mat2_m*n and reutrns the resultant matrix to result
//Matrices should be the same size
int i,j;
for (i = 0; i < M; i++) {
for (j = 0; j < n; j++)
*(result + i*n + j) = *(mat1 + i*n + j) - *(mat2 + i*n + j);
}
return(0);
}
int matADD_N(float *mat1, float *mat2, float *result, int m, int n) {
//Calculates mat1_m*n + mat2_m*n and reutrns the resultant matrix to result
//Matrices should be the same size
int i,j;
for (i = 0; i < N; i++) {
for (j = 0; j < n; j++)
*(result + i*n + j) = *(mat1 + i*n + j) + *(mat2 + i*n + j);
}
return(0);
}
int transpose(float *mat1, float *mat2, int m, int n)
{
//transposes mat1_m*n which is input to mat2_n*m which is out
// M,N dimentions of matrices
int i,j;
for (i = 0; i<m; i++)
for (j = 0; j < n; j++)
{
*(mat2 + j*m + i) = *(mat1 + i*n + j);
}
return(0);
}
/*int print(float *mat, int m, int n) {
// Prints mat with dimentions of m and n
for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {
//_TCE_STREAM_OUT((char) *(mat+i*n+j));
printf("%f ", *(mat + i*n + j));
}
printf("\n");
}
return(1);
}*/
int sorted_order(float *arr, int *sorted_ind, int n, int k)
// arr is input array, n is length of input array, k is number of returned indeces,sorted_int is array of sorted indices
{
int i, j;
for (i = 0; i<n; i++)
{
*(sorted_ind + i) = i;
}
for (i = 0; i<k + 1; i++) //Only k largests are required
{
for (j = i + 1; j<n; j++)
{
if (fabs(*(arr + *(sorted_ind + i))) < fabs(*(arr + *(sorted_ind + j))))
{
swap(&sorted_ind[i], &sorted_ind[j]);
}
}
}
return (0);
}
int matMul_N(float *mat1, float *mat2, float *result, int m, int n, int q) {
float sum1, sum2, sum3, sum4; int i,j,k;
for (i = 0; i < m; i++) {
for (j = 0; j < q; j++) {
sum1 = 0; sum2 = 0; sum3 = 0; sum4 = 0;
float* index_t1 = mat1 + i*n;
float* index_t2 = mat2 + j;
for (k = 0; k < N; k += 4) {
sum1 = sum1 + *(index_t1 + k) * *(index_t2 + k*q); //sum = sum + *(mat1 + i*n + k) * *(mat2 + k*q + j);
sum2 = sum2 + *(index_t1 + k + 1) * *(index_t2 + (k + 1)*q);
sum3 = sum3 + *(index_t1 + k + 2) * *(index_t2 + (k + 2)*q);
sum4 = sum4 + *(index_t1 + k + 3) * *(index_t2 + (k + 3)*q);
}
*(result + i*q + j) = sum1 + sum2 + sum3 + sum4;
}
}
return(0);
}
int matMul_N_in_Middle(float *mat1, float *mat2, float *result, int m, int n, int q) {
float sum1, sum2, sum3, sum4; int i,j,k;
for (i = 0; i < m; i++) {
for (j = 0; j < q; j++) {
sum1 = 0; sum2 = 0; sum3 = 0; sum4 = 0;
float* index_t1 = mat1 + i*n;
float* index_t2 = mat2 + j;
for (k = 0; k < N; k += 4) {
sum1 = sum1 + *(index_t1 + k) * *(index_t2 + k*q); //sum = sum + *(mat1 + i*n + k) * *(mat2 + k*q + j);
sum2 = sum2 + *(index_t1 + k + 1) * *(index_t2 + (k + 1)*q);
sum3 = sum3 + *(index_t1 + k + 2) * *(index_t2 + (k + 2)*q);
sum4 = sum4 + *(index_t1 + k + 3) * *(index_t2 + (k + 3)*q);
}
*(result + i*q + j) = sum1 + sum2 + sum3 + sum4;
}
}
return(0);
}
int matMul_M_in_Middle(float *mat1, float *mat2, float *result, int m, int n, int q) {
float sum1, sum2, sum3, sum4;int i,j,k;
for (i = 0; i < m; i++) {
for (j = 0; j < q; j++) {
sum1 = 0; sum2 = 0; sum3 = 0; sum4 = 0;
float* index_t1 = mat1 + i*n;
float* index_t2 = mat2 + j;
for (k = 0; k < M; k += 4) {
sum1 = sum1 + *(index_t1 + k) * *(index_t2 + k*q); //sum = sum + *(mat1 + i*n + k) * *(mat2 + k*q + j);
sum2 = sum2 + *(index_t1 + k + 1) * *(index_t2 + (k + 1)*q);
sum3 = sum3 + *(index_t1 + k + 2) * *(index_t2 + (k + 2)*q);
sum4 = sum4 + *(index_t1 + k + 3) * *(index_t2 + (k + 3)*q);
}
*(result + i*q + j) = sum1 + sum2 + sum3 + sum4;
}
}
return(0);
}
float MSE(float *a, float *b, int Length)
{
int l;
float temp;
float mse = 0;
for (l = 0; l<Length; l++)
{
temp = a[l] - b[l];
mse += temp*temp;
}
return mse;
}
float SNR(float *a, float *b, int Length)
{
int l;
int i;
int temp;
float mse = MSE(a, b, Length);
float signal_power = 0;
for (i = 0; i<Length; i++)
signal_power += (a[i] * a[i]);
printf("mse : %d \n",(int) mse);
printf("signal_power : %d \n",(int) signal_power);
float snr = 10 * log10(signal_power / mse);
printf("SNR : %d \n", (int)snr);
return snr;
}