YoloDotNet is a blazing-fast C# .NET 8 implementation of Yolov8 all the way up to Yolov11 for real-time object detection in images and videos. Powered by ML.NET and ONNX Runtime, and supercharged with GPU acceleration using CUDA, this app is all about detecting objects at lightning speed!
  ✓  Classification
  Categorize an image
  ✓  Object Detection
  Detect multiple objects in a single image
  ✓  OBB Detection
  OBB (Oriented Bounding Box)
  ✓  Segmentation
  Separate detected objects using pixel masks
  ✓  Pose Estimation
  Identifying location of specific keypoints in an image
Batteries not included.
Classification | Object Detection | OBB Detection | Segmentation | Pose Estimation |
---|---|---|---|---|
image from pexels.com | image from pexels.com | image from pexels.com | image from pexels.com | image from pexels.com |
YoloDotNet 2.1 is here, packing more punch than ever! This release builds on the foundation of the previous "Speed Demon" v2.0 update and adds some exciting new features while keeping everything buttery smooth. Compatibility with older versions has been ensured, and a few tweaks were made for even faster object detection performance. Check out what's new:
Yolov11 Support: The latest and greatest object detection model is now available. Why settle for anything less?
Backward Compatibility for Yolov9: Missing the good ol' Yolov9? Now you can switch between Yolov8-v11 versions. Yay!
Minor Optimizations: A sprinkle of tweaks here and there for even faster object detection, because... uh, more speed is always better!
OnnxRuntime Update: Now featuring support for CUDA 12.x and cuDNN 9.x. The GPU will definitely be happy with this one!
YoloDotNet v2.1 – faster, smarter, and packed with more Yolo goodness ;)
> dotnet add package YoloDotNet
YoloDotNet with GPU-acceleration requires CUDA Toolkit 12.x and cuDNN 9.x.
ONNX runtime's current compatibility with specific versions.
- Install CUDA v12.x
- Install cuDNN v9.x
- Update your system PATH-variable
-
Open File Explorer and navigate to the folder where the cuDNN-dll's are installed. The typical path looks like:
C:\Program Files\NVIDIA\CUDNN\v9.x\bin\v12.x
(where x is your version) -
Once you are in this specific folder (which contains .dll files), copy the folder path from the address bar at the top of the window.
-
Add the cuDNN-Path to your System Variables:
- Type
env
in windows search - Click on
Edit the system environment variables
- Click on
Environment Variables
- Under
System Variables
select thePath
-variable and clickEdit
- Click on
New
and paste in your cuDNN dll-folder path - Click Ok a million times to save the changes
- Type
-
Super-duper-important! In order for Windows to pick up the changes in your Environment Variables, make sure to close all open programs before you continue whatever you were doing ;)
All models must be exported to ONNX format. How to export to ONNX format.
The ONNX-models included in this repo are from Ultralytics s-series (small). https://docs.ultralytics.com/models.
using YoloDotNet;
// Instantiate a new Yolo object with your ONNX-model
using var yolo = new Yolo(@"path\to\model.onnx");
Console.WriteLine(yolo.OnnxModel.ModelType); // Output modeltype...
using YoloDotNet;
using YoloDotNet.Enums;
using YoloDotNet.Models;
using YoloDotNet.Extensions;
using SkiaSharp;
// Instantiate a new Yolo object
using var yolo = new Yolo(new YoloOptions
{
OnnxModel = @"path\to\model.onnx", // Your Yolo model in onnx format
ModelVersion = ModelVersion.V11, // Set the version of your yolo model. Default V8
ModelType = ModelType.ObjectDetection, // Set your model type
Cuda = false, // Use CPU or CUDA for GPU accelerated inference. Default = true
GpuId = 0 // Select Gpu by id. Default = 0
PrimeGpu = false, // Pre-allocate GPU before first inference. Default = false
});
// Load image
using var image = SKImage.FromEncodedData(@"path\to\image.jpg");
// Run inference and get the results
var results = yolo.RunObjectDetection(image, confidence: 0.25, iou: 0.7);
// Draw results
using var resultImage = image.Draw(results);
// Save to file
resultImage.Save(@"save\as\new_image.jpg", SKEncodedImageFormat.Jpeg, 80);
Important
Processing video requires FFmpeg and FFProbe
- Download FFMPEG
- Add FFmpeg and ffprobe to the Path-variable in your Environment Variables
using YoloDotNet;
using YoloDotNet.Enums;
using YoloDotNet.Models;
// Instantiate a new Yolo object
using var yolo = new Yolo(new YoloOptions
{
OnnxModel = @"path\to\model.onnx", // Your Yolov8 or Yolov10 model in onnx format
ModelVersion = ModelVersion.V11, // Set the version of your yolo model. Default V8
ModelType = ModelType.ObjectDetection, // Set your model type
Cuda = false, // Use CPU or CUDA for GPU accelerated inference. Default = true
GpuId = 0 // Select Gpu by id. Default = 0
PrimeGpu = false, // Pre-allocate GPU before first. Default = false
});
// Set video options
var options = new VideoOptions
{
VideoFile = @"path\to\video.mp4",
OutputDir = @"path\to\output\dir",
//GenerateVideo = true,
//DrawLabels = true,
//FPS = 30,
//Width = 640, // Resize video...
//Height = -2, // -2 automatically calculate dimensions to keep proportions
//Quality = 28,
//DrawConfidence = true,
//KeepAudio = true,
//KeepFrames = false,
//DrawSegment = DrawSegment.Default,
//PoseOptions = MyPoseMarkerConfiguration // Your own pose marker configuration...
};
// Run inference on video
var results = yolo.RunObjectDetection(options, 0.25, 0.7);
// Do further processing with 'results'...
Example on how to configure PoseOptions for a Pose Estimation model
// Pass in a PoseOptions parameter to the Draw() extension method. Ex:
image.Draw(poseEstimationResults, poseOptions);
The internal ONNX metadata such as input & output parameters, version, author, description, date along with the labels can be accessed via the yolo.OnnxModel
property.
Example:
using var yolo = new Yolo(@"path\to\model.onnx");
// ONNX metadata and labels resides inside yolo.OnnxModel
Console.WriteLine(yolo.OnnxModel);
Example:
// Instantiate a new object
using var yolo = new Yolo(@"path\to\model.onnx");
// Display metadata
foreach (var property in yolo.OnnxModel.GetType().GetProperties())
{
var value = property.GetValue(yolo.OnnxModel);
Console.WriteLine($"{property.Name,-20}{value!}");
if (property.Name == nameof(yolo.OnnxModel.CustomMetaData))
foreach (var data in (Dictionary<string, string>)value!)
Console.WriteLine($"{"",-20}{data.Key,-20}{data.Value}");
}
// Get ONNX labels
var labels = yolo.OnnxModel.Labels;
Console.WriteLine();
Console.WriteLine($"Labels ({labels.Length}):");
Console.WriteLine(new string('-', 58));
// Display
for (var i = 0; i < labels.Length; i++)
Console.WriteLine($"index: {i,-8} label: {labels[i].Name,20} color: {labels[i].Color}");
// Output:
// ModelType ObjectDetection
// InputName images
// OutputName output0
// CustomMetaData System.Collections.Generic.Dictionary`2[System.String,System.String]
// date 2023-11-07T13:33:33.565196
// description Ultralytics YOLOv8n model trained on coco.yaml
// author Ultralytics
// task detect
// license AGPL-3.0 https://ultralytics.com/license
// version 8.0.202
// stride 32
// batch 1
// imgsz [640, 640]
// names {0: 'person', 1: 'bicycle', 2: 'car' ... }
// ImageSize Size [ Width=640, Height=640 ]
// Input Input { BatchSize = 1, Channels = 3, Width = 640, Height = 640 }
// Output ObjectDetectionShape { BatchSize = 1, Elements = 84, Channels = 8400 }
// Labels YoloDotNet.Models.LabelModel[]
//
// Labels (80):
// ---------------------------------------------------------
// index: 0 label: person color: #5d8aa8
// index: 1 label: bicycle color: #f0f8ff
// index: 2 label: car color: #e32636
// index: 3 label: motorcycle color: #efdecd
// ...
https://github.com/ultralytics/ultralytics
https://github.com/sstainba/Yolov8.Net
https://github.com/mentalstack/yolov5-net
There are some benchmarks included in the project. To run them, you simply need to build the project and run the YoloDotNet.Benchmarks
project.
The solution must be set to Release
mode to run the benchmarks.
There is a if DEBUG section in the benchmark project that will run the benchmarks in Debug mode, but it is not recommended as it will not give accurate results. This is however useful to debug and step through the code. Two examples have been left in place to show how to run the benchmarks in Debug mode, but have been commented out.
Because there is no persistant storage for benchmark results, the results below are in the form of starting point and ending point. If one makes changes to the benchmarks, you would move the ending point to the starting point and run the benchmarks again to see the improvements and those values would be the new ending point.
Benchmark results would be very much based on the hardware used. It is important to try run benchmarks on the same hardware for future comparisons. If different hardware is used, it is important to note the hardware used, as the results would be different, thus the starting point and ending point would need to be updated. Hopefully in future a single hardware configuration can be used for benchmarks, before updating documentation.
Simple benchmarks were modeled around the test project. The test project uses the same images and models as the benchmarks. The benchmarks are run on the same images and models as the test project. These benchmarks provide a good starting point to identify bottlenecks and areas for improvement.
The hardware these benchmarks used are detailed below, the graphics card used was a NVIDIA GeForce RTX 3060 12GB
.
* Summary *
BenchmarkDotNet v0.13.12, Windows 10 (10.0.19045.4529/22H2/2022Update)
Intel Core i7-7700K CPU 4.20GHz (Kaby Lake), 1 CPU, 8 logical and 4 physical cores
.NET SDK 8.0.302
[Host] : .NET 8.0.6 (8.0.624.26715), X64 RyuJIT AVX2
DefaultJob : .NET 8.0.6 (8.0.624.26715), X64 RyuJIT AVX2
Method | Mean | Error | StdDev | Gen0 | Gen1 | Gen2 | Allocated |
---|---|---|---|---|---|---|---|
ClassificationCpu | 5.734 ms | 0.1100 ms | 0.0859 ms | 7.8125 | - | - | 59.98 KB |
ClassificationGpu | 2.255 ms | 0.0054 ms | 0.0059 ms | 11.7188 | - | - | 59.98 KB |
ObjectDetectionCpu | 113.954 ms | 1.3054 ms | 1.0901 ms | - | - | - | 67.5 KB |
ObjectDetectionGpu | 13.751 ms | 0.2164 ms | 0.1918 ms | 15.6250 | - | - | 67.37 KB |
SegmentationCpu | 178.411 ms | 2.7077 ms | 2.5328 ms | 1000.0000 | 333.3333 | - | 7453.61 KB |
SegmentationGpu | 37.857 ms | 0.7501 ms | 0.9212 ms | 1214.2857 | 714.2857 | 214.2857 | 7418.45 KB |
PoseEstimationCpu | 116.557 ms | 0.9387 ms | 1.1528 ms | - | - | - | 39.71 KB |
PoseEstimationGpu | 12.582 ms | 0.1421 ms | 0.1187 ms | - | - | - | 39.57 KB |
ObbDetectionCpu | 346.193 ms | 4.7002 ms | 4.3965 ms | - | - | - | 16.48 KB |
ObbDetectionGpu | 27.591 ms | 0.2080 ms | 0.1844 ms | - | - | - | 15.78 KB |
BenchmarkDotNet v0.13.12, Windows 11 (10.0.22631.4169/23H2/2023Update/SunValley3)
Intel Core i7-14700KF, 1 CPU, 28 logical and 20 physical cores
.NET SDK 8.0.400
[Host] : .NET 8.0.8 (8.0.824.36612), X64 RyuJIT AVX2
DefaultJob : .NET 8.0.8 (8.0.824.36612), X64 RyuJIT AVX2
Method | Mean | Error | StdDev | Median | Gen0 | Allocated | Model Used |
---|---|---|---|---|---|---|---|
ClassificationYolov8Cpu | 3.027 ms | 0.0603 ms | 0.1176 ms | 3.037 ms | - | 40.17 KB | yolov8s-cls |
ClassificationYolov8Gpu | 1.451 ms | 0.0290 ms | 0.0310 ms | 1.456 ms | 1.9531 | 40.17 KB | yolov8s-cls |
ClassificationYolov11Cpu | 6.721 ms | 0.1341 ms | 0.2829 ms | 6.760 ms | - | 41.17 KB | yolov11s-cls |
ClassificationYolov11Gpu | 3.850 ms | 0.1590 ms | 0.4689 ms | 3.610 ms | - | 41.17 KB | yolov11s-cls |
Method | Mean | Error | StdDev | Allocated | Model Used |
---|---|---|---|---|---|
ObjectDetectionYolov8Cpu | 34.462 ms | 0.6583 ms | 0.8559 ms | 34.67 KB | yolov8s |
ObjectDetectionYolov8Gpu | 8.089 ms | 0.0795 ms | 0.0705 ms | 34.63 KB | yolov8s |
ObjectDetectionYolov9Cpu | 38.676 ms | 0.7529 ms | 0.7394 ms | 29.65 KB | yolov9s |
ObjectDetectionYolov9Gpu | 9.730 ms | 0.1243 ms | 0.0971 ms | 29.61 KB | yolov9s |
ObjectDetectionYolov10Cpu | 31.709 ms | 0.6309 ms | 0.5901 ms | 24.67 KB | yolov10s |
ObjectDetectionYolov10Gpu | 7.062 ms | 0.1392 ms | 0.1368 ms | 24.63 KB | yolov10s |
ObjectDetectionYolov11Cpu | 31.856 ms | 0.6252 ms | 0.7678 ms | 32.79 KB | yolov11s |
ObjectDetectionYolov11Gpu | 7.321 ms | 0.0445 ms | 0.0825 ms | 32.75 KB | yolov11s |
Method | Mean | Error | StdDev | Allocated | Model Used |
---|---|---|---|---|---|
ObbDetectionYolov8Cpu | 91.81 ms | 1.734 ms | 1.622 ms | 8.43 KB | yolov8s-obb |
ObbDetectionYolov8Gpu | 13.39 ms | 0.041 ms | 0.036 ms | 8.37 KB | yolov8s-obb |
ObbDetectionYolov11Cpu | 81.91 ms | 1.423 ms | 1.331 ms | 8.43 KB | yolov11s-obb |
ObbDetectionYolov11Gpu | 14.00 ms | 0.027 ms | 0.025 ms | 8.37 KB | yolov11s-obb |
Method | Mean | Error | StdDev | Median | Allocated | Model Used |
---|---|---|---|---|---|---|
PoseEstimationYolov8Cpu | 35.275 ms | 0.4895 ms | 0.4579 ms | 35.180 ms | 24.14 KB | yolov8s-pose |
PoseEstimationYolov8Gpu | 7.445 ms | 0.1474 ms | 0.3415 ms | 7.586 ms | 24.11 KB | yolov8s-pose |
PoseEstimationYolov11Cpu | 32.237 ms | 0.6384 ms | 0.9938 ms | 32.056 ms | 22.15 KB | yolov11s-pose |
PoseEstimationYolov11Gpu | 7.190 ms | 0.1401 ms | 0.1721 ms | 7.206 ms | 22.13 KB | yolov11s-pose |
Method | Mean | Error | StdDev | Gen0 | Gen1 | Gen2 | Allocated | Model Used |
---|---|---|---|---|---|---|---|---|
SegmentationYolov8Cpu | 56.79 ms | 1.121 ms | 1.246 ms | 444.4444 | 333.3333 | 111.1111 | 7.31 MB | yolov8s-seg |
SegmentationYolov8Gpu | 31.50 ms | 0.630 ms | 1.198 ms | 468.7500 | 437.5000 | 156.2500 | 7.28 MB | yolov8s-seg |
SegmentationYolov11Cpu | 96.84 ms | 1.848 ms | 2.270 ms | 333.3333 | 166.6667 | - | 6.8 MB | yolov11s-seg |
SegmentationYolov11Gpu | 28.97 ms | 0.293 ms | 0.274 ms | 406.2500 | 375.0000 | 125.0000 | 6.72 MB | yolov11s-seg |