forked from jax-ml/jax
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandom_test.py
410 lines (331 loc) · 15.1 KB
/
random_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from unittest import SkipTest
import re
from absl.testing import absltest
from absl.testing import parameterized
import numpy as onp
import scipy.special
import scipy.stats
from jax import api
from jax import lax
from jax import numpy as np
from jax import random
from jax import test_util as jtu
from jax.interpreters import xla
from jax.config import config
config.parse_flags_with_absl()
FLAGS = config.FLAGS
class LaxRandomTest(jtu.JaxTestCase):
def _CheckCollisions(self, samples, nbits):
fail_prob = 0.01 # conservative bound on statistical fail prob by Chebyshev
nitems = len(samples)
nbins = 2 ** nbits
nexpected = nbins * (1 - ((nbins - 1) / nbins) ** nitems)
ncollisions = len(onp.unique(samples))
sq_percent_deviation = ((ncollisions - nexpected) / nexpected) ** 2
self.assertLess(sq_percent_deviation, 1 / onp.sqrt(nexpected * fail_prob))
def _CheckKolmogorovSmirnovCDF(self, samples, cdf):
fail_prob = 0.01 # conservative bound on statistical fail prob by Kolmo CDF
self.assertGreater(scipy.stats.kstest(samples, cdf).pvalue, fail_prob)
def _CheckChiSquared(self, samples, pmf):
alpha = 0.01 # significance level, threshold for p-value
values, actual_freq = onp.unique(samples, return_counts=True)
expected_freq = pmf(values) * len(values)
_, p_value = scipy.stats.chisquare(actual_freq, expected_freq)
self.assertLess(p_value, alpha)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_{}".format(dtype), "dtype": onp.dtype(dtype).name}
for dtype in [onp.float32, onp.float64]))
def testNumpyAndXLAAgreeOnFloatEndianness(self, dtype):
if not FLAGS.jax_enable_x64 and onp.issubdtype(dtype, onp.float64):
raise SkipTest("can't test float64 agreement")
bits_dtype = onp.uint32 if onp.finfo(dtype).bits == 32 else onp.uint64
numpy_bits = onp.array(1., dtype).view(bits_dtype)
xla_bits = api.jit(
lambda: lax.bitcast_convert_type(onp.array(1., dtype), bits_dtype))()
self.assertEqual(numpy_bits, xla_bits)
def testThreefry2x32(self):
# We test the hash by comparing to known values provided in the test code of
# the original reference implementation of Threefry. For the values, see
# https://github.com/DEShawResearch/Random123-Boost/blob/65e3d874b67aa7b3e02d5ad8306462f52d2079c0/libs/random/test/test_threefry.cpp#L30-L32
def result_to_hex(result):
return tuple([hex(x.copy()).rstrip("L") for x in result])
expected = ("0x6b200159", "0x99ba4efe")
result = random.threefry_2x32(onp.uint32([0, 0]), onp.uint32([0, 0]))
self.assertEqual(expected, result_to_hex(result))
expected = ("0x1cb996fc", "0xbb002be7")
result = random.threefry_2x32(onp.uint32([-1, -1]), onp.uint32([-1, -1]))
self.assertEqual(expected, result_to_hex(result))
expected = ("0xc4923a9c", "0x483df7a0")
result = random.threefry_2x32(
onp.uint32([0x13198a2e, 0x03707344]),
onp.uint32([0x243f6a88, 0x85a308d3]))
self.assertEqual(expected, result_to_hex(result))
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_{}".format(dtype), "dtype": onp.dtype(dtype).name}
for dtype in [onp.float32, onp.float64]))
def testRngUniform(self, dtype):
key = random.PRNGKey(0)
rand = lambda key: random.uniform(key, (10000,), dtype)
crand = api.jit(rand)
uncompiled_samples = rand(key)
compiled_samples = crand(key)
for samples in [uncompiled_samples, compiled_samples]:
self._CheckCollisions(samples, onp.finfo(dtype).nmant)
self._CheckKolmogorovSmirnovCDF(samples, scipy.stats.uniform().cdf)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_{}".format(dtype), "dtype": onp.dtype(dtype).name}
for dtype in [onp.int32, onp.int64]))
def testRngRandint(self, dtype):
lo = 5
hi = 10
key = random.PRNGKey(0)
rand = lambda key: random.randint(key, (10000,), lo, hi, dtype)
crand = api.jit(rand)
uncompiled_samples = rand(key)
compiled_samples = crand(key)
for samples in [uncompiled_samples, compiled_samples]:
self.assertTrue(onp.all(lo <= samples))
self.assertTrue(onp.all(samples < hi))
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_{}".format(dtype), "dtype": onp.dtype(dtype).name}
for dtype in [onp.float32, onp.float64]))
def testNormal(self, dtype):
key = random.PRNGKey(0)
rand = lambda key: random.normal(key, (10000,), dtype)
crand = api.jit(rand)
uncompiled_samples = rand(key)
compiled_samples = crand(key)
for samples in [uncompiled_samples, compiled_samples]:
self._CheckKolmogorovSmirnovCDF(samples, scipy.stats.norm().cdf)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_{}".format(dtype), "dtype": onp.dtype(dtype).name}
for dtype in [onp.float32, onp.float64, onp.int32, onp.int64]))
def testShuffle(self, dtype):
key = random.PRNGKey(0)
x = onp.arange(100).astype(dtype)
rand = lambda key: random.shuffle(key, x)
crand = api.jit(rand)
perm1 = rand(key)
perm2 = crand(key)
self.assertTrue(onp.all(perm1 == perm2))
self.assertTrue(onp.all(perm1.dtype == perm2.dtype))
self.assertFalse(onp.all(perm1 == x)) # seems unlikely!
self.assertTrue(onp.all(onp.sort(perm1) == x))
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_p={}_{}".format(p, dtype),
"p": p, "dtype": onp.dtype(dtype).name}
for p in [0.1, 0.5, 0.9]
for dtype in [onp.float32, onp.float64]))
def testBernoulli(self, p, dtype):
key = random.PRNGKey(0)
p = onp.array(p, dtype=dtype)
rand = lambda key, p: random.bernoulli(key, p, (10000,))
crand = api.jit(rand)
uncompiled_samples = rand(key, p)
compiled_samples = crand(key, p)
for samples in [uncompiled_samples, compiled_samples]:
self._CheckChiSquared(samples, scipy.stats.bernoulli(p).pmf)
def testBernoulliShape(self):
key = random.PRNGKey(0)
x = random.bernoulli(key, onp.array([0.2, 0.3]), shape=(3, 2))
assert x.shape == (3, 2)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_a={}_b={}_{}".format(a, b, dtype),
"a": a, "b": b, "dtype": onp.dtype(dtype).name}
for a in [0.2, 5.]
for b in [0.2, 5.]
for dtype in [onp.float32, onp.float64]))
# TODO(phawkins): slow compilation times on cpu and tpu.
# TODO(mattjj): test fails after https://github.com/google/jax/pull/1123
@jtu.skip_on_devices("cpu", "gpu", "tpu")
def testBeta(self, a, b, dtype):
key = random.PRNGKey(0)
rand = lambda key, a, b: random.beta(key, a, b, (10000,), dtype)
crand = api.jit(rand)
uncompiled_samples = rand(key, a, b)
compiled_samples = crand(key, a, b)
for samples in [uncompiled_samples, compiled_samples]:
self._CheckKolmogorovSmirnovCDF(samples, scipy.stats.beta(a, b).cdf)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_{}".format(dtype), "dtype": onp.dtype(dtype).name}
for dtype in [onp.float32, onp.float64]))
def testCauchy(self, dtype):
key = random.PRNGKey(0)
rand = lambda key: random.cauchy(key, (10000,), dtype)
crand = api.jit(rand)
uncompiled_samples = rand(key)
compiled_samples = crand(key)
for samples in [uncompiled_samples, compiled_samples]:
self._CheckKolmogorovSmirnovCDF(samples, scipy.stats.cauchy().cdf)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_alpha={}_{}".format(alpha, dtype),
"alpha": alpha, "dtype": onp.dtype(dtype).name}
for alpha in [[0.2, 1., 5.]]
for dtype in [onp.float32, onp.float64]))
def testDirichlet(self, alpha, dtype):
key = random.PRNGKey(0)
rand = lambda key, alpha: random.dirichlet(key, alpha, (10000,), dtype)
crand = api.jit(rand)
uncompiled_samples = rand(key, alpha)
compiled_samples = crand(key, alpha)
for samples in [uncompiled_samples, compiled_samples]:
self.assertAllClose(samples.sum(-1), onp.ones(10000, dtype=dtype), check_dtypes=True)
alpha_sum = sum(alpha)
for i, a in enumerate(alpha):
self._CheckKolmogorovSmirnovCDF(samples[..., i], scipy.stats.beta(a, alpha_sum - a).cdf)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_{}".format(dtype), "dtype": onp.dtype(dtype).name}
for dtype in [onp.float32, onp.float64]))
def testExponential(self, dtype):
key = random.PRNGKey(0)
rand = lambda key: random.exponential(key, (10000,), dtype)
crand = api.jit(rand)
uncompiled_samples = rand(key)
compiled_samples = crand(key)
for samples in [uncompiled_samples, compiled_samples]:
self._CheckKolmogorovSmirnovCDF(samples, scipy.stats.expon().cdf)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_a={}_{}".format(a, dtype),
"a": a, "dtype": onp.dtype(dtype).name}
for a in [0.1, 1., 10.]
for dtype in [onp.float32, onp.float64]))
def testGamma(self, a, dtype):
key = random.PRNGKey(0)
rand = lambda key, a: random.gamma(key, a, (10000,), dtype)
crand = api.jit(rand)
uncompiled_samples = rand(key, a)
compiled_samples = crand(key, a)
for samples in [uncompiled_samples, compiled_samples]:
self._CheckKolmogorovSmirnovCDF(samples, scipy.stats.gamma(a).cdf)
def testGammaShape(self):
key = random.PRNGKey(0)
x = random.gamma(key, onp.array([0.2, 0.3]), shape=(3, 2))
assert x.shape == (3, 2)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_a={}".format(alpha), "alpha": alpha}
for alpha in [1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3, 1e4]))
def testGammaGrad(self, alpha):
rng = random.PRNGKey(0)
alphas = onp.full((100,), alpha)
z = random.gamma(rng, alphas)
actual_grad = api.grad(lambda x: (random.gamma(rng, x)).sum())(alphas)
eps = 0.01 * alpha / (1.0 + onp.sqrt(alpha))
cdf_dot = (scipy.stats.gamma.cdf(z, alpha + eps)
- scipy.stats.gamma.cdf(z, alpha - eps)) / (2 * eps)
pdf = scipy.stats.gamma.pdf(z, alpha)
expected_grad = -cdf_dot / pdf
self.assertAllClose(actual_grad, expected_grad, check_dtypes=True, rtol=0.0005)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_{}".format(dtype), "dtype": onp.dtype(dtype).name}
for dtype in [onp.float32, onp.float64]))
def testGumbel(self, dtype):
key = random.PRNGKey(0)
rand = lambda key: random.gumbel(key, (10000,), dtype)
crand = api.jit(rand)
uncompiled_samples = rand(key)
compiled_samples = crand(key)
for samples in [uncompiled_samples, compiled_samples]:
self._CheckKolmogorovSmirnovCDF(samples, scipy.stats.gumbel_r().cdf)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_{}".format(dtype), "dtype": onp.dtype(dtype).name}
for dtype in [onp.float32, onp.float64]))
def testLaplace(self, dtype):
key = random.PRNGKey(0)
rand = lambda key: random.laplace(key, (10000,), dtype)
crand = api.jit(rand)
uncompiled_samples = rand(key)
compiled_samples = crand(key)
for samples in [uncompiled_samples, compiled_samples]:
self._CheckKolmogorovSmirnovCDF(samples, scipy.stats.laplace().cdf)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_{}".format(dtype), "dtype": onp.dtype(dtype).name}
for dtype in [onp.float32, onp.float64]))
def testLogistic(self, dtype):
key = random.PRNGKey(0)
rand = lambda key: random.logistic(key, (10000,), dtype)
crand = api.jit(rand)
uncompiled_samples = rand(key)
compiled_samples = crand(key)
for samples in [uncompiled_samples, compiled_samples]:
self._CheckKolmogorovSmirnovCDF(samples, scipy.stats.logistic().cdf)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_b={}_{}".format(b, dtype),
"b": b, "dtype": onp.dtype(dtype).name}
for b in [0.1, 1., 10.]
for dtype in [onp.float32, onp.float64]))
def testPareto(self, b, dtype):
key = random.PRNGKey(0)
rand = lambda key, b: random.pareto(key, b, (10000,), dtype)
crand = api.jit(rand)
uncompiled_samples = rand(key, b)
compiled_samples = crand(key, b)
for samples in [uncompiled_samples, compiled_samples]:
self._CheckKolmogorovSmirnovCDF(samples, scipy.stats.pareto(b).cdf)
def testParetoShape(self):
key = random.PRNGKey(0)
x = random.pareto(key, onp.array([0.2, 0.3]), shape=(3, 2))
assert x.shape == (3, 2)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_df={}_{}".format(df, dtype),
"df": df, "dtype": onp.dtype(dtype).name}
for df in [0.1, 1., 10.]
for dtype in [onp.float32, onp.float64]))
@jtu.skip_on_devices("cpu", "tpu") # TODO(phawkins): slow compilation times
def testT(self, df, dtype):
key = random.PRNGKey(0)
rand = lambda key, df: random.t(key, df, (10000,), dtype)
crand = api.jit(rand)
uncompiled_samples = rand(key, df)
compiled_samples = crand(key, df)
for samples in [uncompiled_samples, compiled_samples]:
self._CheckKolmogorovSmirnovCDF(samples, scipy.stats.t(df).cdf)
def testIssue222(self):
x = random.randint(random.PRNGKey(10003), (), 0, 0)
assert x == 0
def testFoldIn(self):
key = random.PRNGKey(0)
keys = [random.fold_in(key, i) for i in range(10)]
assert onp.unique(onp.ravel(keys)).shape == (20,)
def testStaticShapeErrors(self):
@api.jit
def feature_map(n, d, sigma=1.0, seed=123):
key = random.PRNGKey(seed)
W = random.normal(key, (d, n)) / sigma
w = random.normal(key, (d, )) / sigma
b = 2 * np.pi * random.uniform(key, (d, ))
phi = lambda x, t: np.sqrt(2.0 / d) * np.cos(np.matmul(W, x) + w*t + b)
return phi
self.assertRaisesRegex(ValueError, re.compile(r'.*requires a concrete.*'),
lambda: feature_map(5, 3))
def testIssue756(self):
key = random.PRNGKey(0)
w = random.normal(key, ())
if FLAGS.jax_enable_x64:
self.assertEqual(onp.result_type(w), onp.float64)
else:
self.assertEqual(onp.result_type(w), onp.float32)
def testNoOpByOpUnderHash(self):
def fail(*args, **kwargs): assert False
apply_primitive, xla.apply_primitive = xla.apply_primitive, fail
try:
out = random.threefry_2x32(onp.zeros(2, onp.uint32), onp.arange(10, dtype=onp.uint32))
finally:
xla.apply_primitive = apply_primitive
if __name__ == "__main__":
absltest.main()