forked from infostreams/neural-network
-
Notifications
You must be signed in to change notification settings - Fork 0
/
class_neuralnetwork.php
executable file
·838 lines (716 loc) · 25.8 KB
/
class_neuralnetwork.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
<?php
/**
* <b>Multi-layer Neural Network in PHP</b>
*
* Loosely based on source code by {@link http://www.philbrierley.com Phil Brierley},
* that was translated into PHP by 'dspink' in sep 2005
*
* Algorithm was obtained from the excellent introductory book
* "{@link http://www.amazon.com/link/dp/0321204662 Artificial Intelligence - a guide to intelligent systems}"
* by Michael Negnevitsky (ISBN 0-201-71159-1)
*
* <b>Example: learning the 'XOR'-function</b>
* <code>
* // Create a new neural network with 3 input neurons,
* // 4 hidden neurons, and 1 output neuron
* $n = new NeuralNetwork(3, 4, 1);
* $n->setVerbose(false);
*
* // Add test-data to the network. In this case,
* // we want the network to learn the 'XOR'-function
* $n->addTestData(array (-1, -1, 1), array (-1));
* $n->addTestData(array (-1, 1, 1), array ( 1));
* $n->addTestData(array ( 1, -1, 1), array ( 1));
* $n->addTestData(array ( 1, 1, 1), array (-1));
*
* // we try training the network for at most $max times
* $max = 3;
*
* // train the network in max 1000 epochs, with a max squared error of 0.01
* while (!($success = $n->train(1000, 0.01)) && ++$i<$max) {
* echo "Round $i: No success...<hr />";
* }
*
* // print a message if the network was succesfully trained
* if ($success) {
* $epochs = $n->getEpoch();
* echo "Success in $epochs training rounds!<hr />";
* }
*
* // in any case, we print the output of the neural network
* echo "<h2>End result</h2>";
* for ($i = 0; $i < count($n->trainInputs); $i ++) {
* $output = $n->calculate($n->trainInputs[$i]);
* echo "<br />Testset $i; ";
* echo "expected output = (".implode(", ", $n->trainOutput[$i]).") ";
* echo "output from neural network = (".implode(", ", $output).")\n";
* }
* </code>
*
* The resulting output could for example be something along the following lines:
*
* <code>
* Success in 719 training rounds!
* Testset 0; expected output = (-1) output from neural network = (-0.986415991978)
* Testset 1; expected output = (1) output from neural network = (0.992121412998)
* Testset 2; expected output = (1) output from neural network = (0.992469534962)
* Testset 3; expected output = (-1) output from neural network = (-0.990224120384)
* </code>
*
* ...which indicates the network has learned the task.
*
* @author E. Akerboom
* @author {@link http://www.tremani.nl/ Tremani}, {@link http://maps.google.com/maps?f=q&hl=en&q=delft%2C+the+netherlands&ie=UTF8&t=k&om=1&ll=53.014783%2C4.921875&spn=36.882665%2C110.566406&z=4 Delft}, The Netherlands
* @since feb 2007
* @version 1.1
* @license http://opensource.org/licenses/bsd-license.php BSD License
*/
class NeuralNetwork {
protected $nodeCount = array ();
protected $nodeValue = array ();
protected $nodeThreshold = array ();
protected $edgeWeight = array ();
protected $learningRate = array (0.1);
protected $layerCount = 0;
protected $previousWeightCorrection = array ();
protected $momentum = 0.8;
protected $isVerbose = true;
protected $weightsInitialized = false;
public $trainInputs = array ();
public $trainOutput = array ();
public $trainDataID = array ();
public $controlInputs = array ();
public $controlOutput = array ();
public $controlDataID = array ();
protected $epoch;
protected $errorTrainingset;
protected $errorControlset;
protected $success;
/**
* Creates a neural network.
*
* Example:
* <code>
* // create a network with 4 input nodes, 10 hidden nodes, and 4 output nodes
* $n = new NeuralNetwork(4, 10, 4);
*
* // create a network with 4 input nodes, 1 hidden layer with 10 nodes,
* // another hidden layer with 10 nodes, and 4 output nodes
* $n = new NeuralNetwork(4, 10, 10, 4);
*
* // alternative syntax
* $n = new NeuralNetwork(array(4, 10, 10, 4));
* </code>
*
* @param array $nodeCount The number of nodes in the consecutive layers.
*/
public function __construct($nodeCount) {
if (!is_array($nodeCount)) {
$nodeCount = func_get_args();
}
$this->nodeCount = $nodeCount;
// store the number of layers
$this->layerCount = count($this->nodeCount);
}
/**
* Exports the neural network
*
* @returns array
*/
public function export()
{
return array(
'layerCount' => $this->layerCount,
'nodeCount' => $this->nodeCount,
'edgeWeight' => $this->edgeWeight,
'nodeThreshold' => $this->nodeThreshold,
'learningRate' => $this->learningrate,
'momentum' => $this->momentum,
'isVerbose' => $this->isVerbose,
'weightsInitialized' => $this->weightsInitialized,
);
}
/**
* Import a neural network
* @param array $nn_array An array of the neural network parameters
*/
public function import($nn_array)
{
foreach ($nn_array as $key => $value)
{
$this->$key = $value;
}
return $this;
}
/**
* Sets the learning rate between the different layers.
*
* @param array $learningRate An array containing the learning rates [range 0.0 - 1.0].
* The size of this array is 'layerCount - 1'. You might also provide a single number. If that is
* the case, then this will be the learning rate for the whole network.
*/
public function setLearningRate($learningRate) {
if (!is_array($learningRate)) {
$learningRate = func_get_args();
}
$this->learningRate = $learningRate;
}
/**
* Gets the learning rate for a specific layer
*
* @param int $layer The layer to obtain the learning rate for
* @return float The learning rate for that layer
*/
public function getLearningRate($layer) {
if (array_key_exists($layer, $this->learningRate)) {
return $this->learningRate[$layer];
}
return $this->learningRate[0];
}
/**
* Sets the 'momentum' for the learning algorithm. The momentum should
* accelerate the learning process and help avoid local minima.
*
* @param float $momentum The momentum. Must be between 0.0 and 1.0; Usually between 0.5 and 0.9
*/
public function setMomentum($momentum) {
$this->momentum = $momentum;
}
/**
* Gets the momentum.
*
* @return float The momentum
*/
public function getMomentum() {
return $this->momentum;
}
/**
* Calculate the output of the neural network for a given input vector
*
* @param array $input The vector to calculate
* @return mixed The output of the network
*/
public function calculate($input) {
// put the input vector on the input nodes
foreach ($input as $index => $value) {
$this->nodeValue[0][$index] = $value;
}
// iterate the hidden layers
for ($layer = 1; $layer < $this->layerCount; $layer ++) {
$prev_layer = $layer -1;
// iterate each node in this layer
for ($node = 0; $node < ($this->nodeCount[$layer]); $node ++) {
$node_value = 0.0;
// each node in the previous layer has a connection to this node
// on basis of this, calculate this node's value
for ($prev_node = 0; $prev_node < ($this->nodeCount[$prev_layer]); $prev_node ++) {
$inputnode_value = $this->nodeValue[$prev_layer][$prev_node];
$edge_weight = $this->edgeWeight[$prev_layer][$prev_node][$node];
$node_value = $node_value + ($inputnode_value * $edge_weight);
}
// apply the threshold
$node_value = $node_value - $this->nodeThreshold[$layer][$node];
// apply the activation function
$node_value = $this->activation($node_value);
// remember the outcome
$this->nodeValue[$layer][$node] = $node_value;
}
}
// return the values of the last layer (the output layer)
return $this->nodeValue[$this->layerCount - 1];
}
/**
* Implements the standard (default) activation function for backpropagation networks,
* the 'tanh' activation function.
*
* @param float $value The preliminary output to apply this function to
* @return float The final output of the node
*/
protected function activation($value) {
return tanh($value);
// return (1.0 / (1.0 + exp(- $value)));
}
/**
* Implements the derivative of the activation function. By default, this is the
* inverse of the 'tanh' activation function: 1.0 - tanh($value)*tanh($value);
*
* @param float $value 'X'
* @return $float
*/
protected function derivativeActivation($value) {
$tanh = tanh($value);
return 1.0 - $tanh * $tanh;
//return $value * (1.0 - $value);
}
/**
* Add a test vector and its output
*
* @param array $input An input vector
* @param array $output The corresponding output
* @param int $id (optional) An identifier for this piece of data
*/
public function addTestData($input, $output, $id = null) {
$index = count($this->trainInputs);
foreach ($input as $node => $value) {
$this->trainInputs[$index][$node] = $value;
}
foreach ($output as $node => $value) {
$this->trainOutput[$index][$node] = $value;
}
$this->trainDataID[$index] = $id;
}
/**
* Returns the identifiers of the data used to train the network (if available)
*
* @return array An array of identifiers
*/
public function getTestDataIDs() {
return $this->trainDataID;
}
/**
* Add a set of control data to the network.
*
* This set of data is used to prevent 'overlearning' of the network. The
* network will stop training if the results obtained for the control data
* are worsening.
*
* The data added as control data is not used for training.
*
* @param array $input An input vector
* @param array $output The corresponding output
* @param int $id (optional) An identifier for this piece of data
*/
public function addControlData($input, $output, $id = null) {
$index = count($this->controlInputs);
foreach ($input as $node => $value) {
$this->controlInputs[$index][$node] = $value;
}
foreach ($output as $node => $value) {
$this->controlOutput[$index][$node] = $value;
}
$this->controlDataID[$index] = $id;
}
/**
* Returns the identifiers of the control data used during the training
* of the network (if available)
*
* @return array An array of identifiers
*/
public function getControlDataIDs() {
return $this->controlDataID;
}
/**
* Shows the current weights and thresholds
*
* @param boolean $force Force the output, even if the network is {@link setVerbose() not verbose}.
*/
public function showWeights($force = false) {
if ($this->isVerbose() || $force) {
echo "<hr>";
echo "<br />Weights: <pre>".print_r($this->edgeWeight, true)."</pre>";
echo "<br />Thresholds: <pre>".print_r($this->nodeThreshold, true)."</pre>";
}
}
/**
* Determines if the neural network displays status and error messages. By default, it does.
*
* @param boolean $isVerbose 'true' if you want to display status and error messages, 'false' if you don't
*/
public function setVerbose($isVerbose) {
$this->isVerbose = $isVerbose;
}
/**
* Returns whether or not the network displays status and error messages.
*
* @return boolean 'true' if status and error messages are displayed, 'false' otherwise
*/
public function isVerbose() {
return $this->isVerbose;
}
/**
* Loads a neural network from a file saved by the 'save()' function. Clears
* the training and control data added so far.
*
* @param string $filename The filename to load the network from
* @return boolean 'true' on success, 'false' otherwise
*/
public function load($filename) {
if (file_exists($filename)) {
$data = parse_ini_file($filename);
if (array_key_exists("edges", $data) && array_key_exists("thresholds", $data)) {
// make sure all standard preparations performed
$this->initWeights();
// load data from file
$this->edgeWeight = unserialize($data['edges']);
$this->nodeThreshold = unserialize($data['thresholds']);
$this->weightsInitialized = true;
// load IDs of training and control set
if (array_key_exists("training_data", $data) && array_key_exists("control_data", $data)) {
// load the IDs
$this->trainDataID = unserialize($data['training_data']);
$this->controlDataID = unserialize($data['control_data']);
// if we do not reset the training and control data here, then we end up
// with a bunch of IDs that do not refer to the actual data we're training
// the network with.
$this->controlInputs = array ();
$this->controlOutput = array ();
$this->trainInputs = array ();
$this->trainOutput = array ();
}
return true;
}
}
return false;
}
/**
* Saves a neural network to a file
*
* @param string $filename The filename to save the neural network to
* @return boolean 'true' on success, 'false' otherwise
*/
public function save($filename) {
$f = fopen($filename, "w");
if ($f) {
fwrite($f, "[weights]");
fwrite($f, "\r\nedges = \"".serialize($this->edgeWeight)."\"");
fwrite($f, "\r\nthresholds = \"".serialize($this->nodeThreshold)."\"");
fwrite($f, "\r\n");
fwrite($f, "[identifiers]");
fwrite($f, "\r\ntraining_data = \"".serialize($this->trainDataID)."\"");
fwrite($f, "\r\ncontrol_data = \"".serialize($this->controlDataID)."\"");
fclose($f);
return true;
}
return false;
}
/**
* Resets the state of the neural network, so it is ready for a new
* round of training.
*/
public function clear() {
$this->initWeights();
}
/**
* Start the training process
*
* @param int $maxEpochs The maximum number of epochs
* @param float $maxError The maximum squared error in the training data
* @return bool 'true' if the training was successful, 'false' otherwise
*/
public function train($maxEpochs = 500, $maxError = 0.01) {
if (!$this->weightsInitialized) {
$this->initWeights();
}
if ($this->isVerbose()) {
echo "<table>";
echo "<tr><th>#</th><th>error(trainingdata)</th><th>error(controldata)</th><th>slope(error(controldata))</th></tr>";
}
$epoch = 0;
$errorControlSet = array ();
$avgErrorControlSet = array ();
$sample_count = 10;
do {
// echo "<tr><td colspan=10><b>epoch $epoch</b></td></tr>";
for ($i = 0; $i < count($this->trainInputs); $i ++) {
// select a training pattern at random
$index = mt_rand(0, count($this->trainInputs) - 1);
// determine the input, and the desired output
$input = $this->trainInputs[$index];
$desired_output = $this->trainOutput[$index];
// calculate the actual output
$output = $this->calculate($input);
// echo "<tr><td></td><td>Training set $i</td><td>input = (" . implode(", ", $input) . ")</td>";
// echo "<td>desired = (" . implode(", ", $desired_output) . ")</td>";
// echo "<td>output = (" . implode(", ", $output) .")</td></tr>";
// change network weights
$this->backpropagate($output, $desired_output);
}
// buy some time
set_time_limit(300);
//display the overall network error after each epoch
$squaredError = $this->squaredErrorEpoch();
if ($epoch % 2 == 0) {
$squaredErrorControlSet = $this->squaredErrorControlSet();
$errorControlSet[] = $squaredErrorControlSet;
if (count($errorControlSet) > $sample_count) {
$avgErrorControlSet[] = array_sum(array_slice($errorControlSet, -$sample_count)) / $sample_count;
}
list ($slope, $offset) = $this->fitLine($avgErrorControlSet);
$controlset_msg = $squaredErrorControlSet;
} else {
$controlset_msg = "";
}
if ($this->isVerbose()) {
echo "<tr><td><b>$epoch</b></td><td>$squaredError</td><td>$controlset_msg";
echo "<script type='text/javascript'>window.scrollBy(0,100);</script>";
echo "</td><td>$slope</td></tr>";
echo "</td></tr>";
flush();
ob_flush();
}
// conditions for a 'successful' stop:
// 1. the squared error is now lower than the provided maximum error
$stop_1 = $squaredError <= $maxError || $squaredErrorControlSet <= $maxError;
// conditions for an 'unsuccessful' stop
// 1. the maximum number of epochs has been reached
$stop_2 = $epoch ++ > $maxEpochs;
// 2. the network's performance on the control data is getting worse
$stop_3 = $slope > 0;
} while (!$stop_1 && !$stop_2 && !$stop_3);
$this->setEpoch($epoch);
$this->setErrorTrainingSet($squaredError);
$this->setErrorControlSet($squaredErrorControlSet);
$this->setTrainingSuccessful($stop_1);
if ($this->isVerbose()) {
echo "</table>";
}
return $stop_1;
}
/**
* After training, this function is used to store the number of epochs the network
* needed for training the network. An epoch is defined as the number of times
* the complete trainingset is used for training.
*
* @param int $epoch
*/
private function setEpoch($epoch) {
$this->epoch = $epoch;
}
/**
* Gets the number of epochs the network needed for training.
*
* @return int The number of epochs.
*/
public function getEpoch() {
return $this->epoch;
}
/**
* After training, this function is used to store the squared error between the
* desired output and the obtained output of the training data.
*
* @param float $error The squared error of the training data
*/
private function setErrorTrainingSet($error) {
$this->errorTrainingset = $error;
}
/**
* Gets the squared error between the desired output and the obtained output of
* the training data.
*
* @return float The squared error of the training data
*/
public function getErrorTrainingSet() {
return $this->errorTrainingset;
}
/**
* After training, this function is used to store the squared error between the
* desired output and the obtained output of the control data.
*
* @param float $error The squared error of the control data
*/
private function setErrorControlSet($error) {
$this->errorControlset = $error;
}
/**
* Gets the squared error between the desired output and the obtained output of
* the control data.
*
* @return float The squared error of the control data
*/
public function getErrorControlSet() {
return $this->errorControlset;
}
/**
* After training, this function is used to store whether or not the training
* was successful.
*
* @param bool $success 'true' if the training was successful, 'false' otherwise
*/
private function setTrainingSuccessful($success) {
$this->success = $success;
}
/**
* Determines if the training was successful.
*
* @return bool 'true' if the training was successful, 'false' otherwise
*/
public function getTrainingSuccessful() {
return $this->success;
}
/**
* Finds the least square fitting line for the given data.
*
* This function is used to determine if the network is overtraining itself. If
* the line through the controlset's most recent squared errors is going 'up',
* then it's time to stop training.
*
* @param array $data The points to fit a line to. The keys of this array represent
* the 'x'-value of the point, the corresponding value is the
* 'y'-value of the point.
* @return array An array containing, respectively, the slope and the offset of the fitted line.
*/
private function fitLine($data) {
// based on
// http://mathworld.wolfram.com/LeastSquaresFitting.html
$n = count($data);
if ($n > 1) {
$sum_y = 0;
$sum_x = 0;
$sum_x2 = 0;
$sum_xy = 0;
foreach ($data as $x => $y) {
$sum_x += $x;
$sum_y += $y;
$sum_x2 += $x * $x;
$sum_xy += $x * $y;
}
// implementation of formula (12)
$offset = ($sum_y * $sum_x2 - $sum_x * $sum_xy) / ($n * $sum_x2 - $sum_x * $sum_x);
// implementation of formula (13)
$slope = ($n * $sum_xy - $sum_x * $sum_y) / ($n * $sum_x2 - $sum_x * $sum_x);
return array ($slope, $offset);
} else {
return array (0.0, 0.0);
}
}
/**
* Gets a random weight between [-0.25 .. 0.25]. Used to initialize the network.
*
* @return float A random weight
*/
private function getRandomWeight($layer) {
return ((mt_rand(0, 1000) / 1000) - 0.5) / 2;
}
/**
* Randomise the weights in the neural network
*/
private function initWeights() {
// assign a random value to each edge between the layers, and randomise each threshold
//
// 1. start at layer '1' (so skip the input layer)
for ($layer = 1; $layer < $this->layerCount; $layer ++) {
$prev_layer = $layer -1;
// 2. in this layer, walk each node
for ($node = 0; $node < $this->nodeCount[$layer]; $node ++) {
// 3. randomise this node's threshold
$this->nodeThreshold[$layer][$node] = $this->getRandomWeight($layer);
// 4. this node is connected to each node of the previous layer
for ($prev_index = 0; $prev_index < $this->nodeCount[$prev_layer]; $prev_index ++) {
// 5. this is the 'edge' that needs to be reset / initialised
$this->edgeWeight[$prev_layer][$prev_index][$node] = $this->getRandomWeight($prev_layer);
// 6. initialize the 'previous weightcorrection' at 0.0
$this->previousWeightCorrection[$prev_layer][$prev_index] = 0.0;
}
}
}
}
/**
* Performs the backpropagation algorithm. This changes the weights and thresholds of the network.
*
* @param array $output The output obtained by the network
* @param array $desired_output The desired output
*/
private function backpropagate($output, $desired_output) {
$errorgradient = array ();
$outputlayer = $this->layerCount - 1;
$momentum = $this->getMomentum();
// Propagate the difference between output and desired output through the layers.
for ($layer = $this->layerCount - 1; $layer > 0; $layer --) {
for ($node = 0; $node < $this->nodeCount[$layer]; $node ++) {
// step 1: determine errorgradient
if ($layer == $outputlayer) {
// for the output layer:
// 1a. calculate error between desired output and actual output
$error = $desired_output[$node] - $output[$node];
// 1b. calculate errorgradient
$errorgradient[$layer][$node] = $this->derivativeActivation($output[$node]) * $error;
} else {
// for hidden layers:
// 1a. sum the product of edgeWeight and errorgradient of the 'next' layer
$next_layer = $layer +1;
$productsum = 0;
for ($next_index = 0; $next_index < ($this->nodeCount[$next_layer]); $next_index ++) {
$_errorgradient = $errorgradient[$next_layer][$next_index];
$_edgeWeight = $this->edgeWeight[$layer][$node][$next_index];
$productsum = $productsum + $_errorgradient * $_edgeWeight;
}
// 1b. calculate errorgradient
$nodeValue = $this->nodeValue[$layer][$node];
$errorgradient[$layer][$node] = $this->derivativeActivation($nodeValue) * $productsum;
}
// step 2: use the errorgradient to determine a weight correction for each node
$prev_layer = $layer -1;
$learning_rate = $this->getlearningRate($prev_layer);
for ($prev_index = 0; $prev_index < ($this->nodeCount[$prev_layer]); $prev_index ++) {
// 2a. obtain nodeValue, edgeWeight and learning rate
$nodeValue = $this->nodeValue[$prev_layer][$prev_index];
$edgeWeight = $this->edgeWeight[$prev_layer][$prev_index][$node];
// 2b. calculate weight correction
$weight_correction = $learning_rate * $nodeValue * $errorgradient[$layer][$node];
// 2c. retrieve previous weight correction
$prev_weightcorrection = @$this->previousWeightCorrection[$layer][$node];
// 2d. combine those ('momentum learning') to a new weight
$new_weight = $edgeWeight + $weight_correction + $momentum * $prev_weightcorrection;
// 2e. assign the new weight to this edge
$this->edgeWeight[$prev_layer][$prev_index][$node] = $new_weight;
// 2f. remember this weightcorrection
$this->previousWeightCorrection[$layer][$node] = $weight_correction;
}
// step 3: use the errorgradient to determine threshold correction
$threshold_correction = $learning_rate * -1 * $errorgradient[$layer][$node];
$new_threshold = $this->nodeThreshold[$layer][$node] + $threshold_correction;
$this->nodeThreshold[$layer][$node] = $new_threshold;
}
}
}
/**
* Calculate the root-mean-squared error of the output, given the
* trainingdata.
*
* @return float The root-mean-squared error of the output
*/
private function squaredErrorEpoch() {
$RMSerror = 0.0;
for ($i = 0; $i < count($this->trainInputs); $i ++) {
$RMSerror += $this->squaredError($this->trainInputs[$i], $this->trainOutput[$i]);
}
$RMSerror = $RMSerror / count($this->trainInputs);
return sqrt($RMSerror);
}
/**
* Calculate the root-mean-squared error of the output, given the
* controldata.
*
* @return float The root-mean-squared error of the output
*/
private function squaredErrorControlSet() {
if (count($this->controlInputs) == 0) {
return 1.0;
}
$RMSerror = 0.0;
for ($i = 0; $i < count($this->controlInputs); $i ++) {
$RMSerror += $this->squaredError($this->controlInputs[$i], $this->controlOutput[$i]);
}
$RMSerror = $RMSerror / count($this->controlInputs);
return sqrt($RMSerror);
}
/**
* Calculate the root-mean-squared error of the output, given the
* desired output.
*
* @param array $input The input to test
* @param array $desired_output The desired output
* @return float The root-mean-squared error of the output compared to the desired output
*/
private function squaredError($input, $desired_output) {
$output = $this->calculate($input);
$RMSerror = 0.0;
foreach ($output as $node => $value) {
//calculate the error
$error = $output[$node] - $desired_output[$node];
$RMSerror = $RMSerror + ($error * $error);
}
return $RMSerror;
}
}
?>