diff --git a/README.md b/README.md index 7283028..29b28c0 100644 --- a/README.md +++ b/README.md @@ -55,6 +55,20 @@ Top journals with paper counts: # 2022 ## Journal +* Dai S, Wang J, Huang C, et al. Dynamic Multi-View Graph Neural Networks for Citywide Traffic Inference[J]. ACM Transactions on Knowledge Discovery from Data (TKDD), 2022. [Link](https://dl.acm.org/doi/abs/10.1145/3564754) [Code](https://github.com/dsj96/TKDD) +* Wang Q, Jiang H, Qiu M, et al. TGAE: Temporal Graph Autoencoder for Travel Forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2022. [Link](https://ieeexplore.ieee.org/abstract/document/9889163/) [Code](https://github.com/wangqiang-codes/TGAE) +* Jin G, Xi Z, Sha H, et al. Deep Multi-view Graph-Based Network for Citywide Ride-hailing Demand Prediction[J]. Neurocomputing, 2022. [Link](https://www.sciencedirect.com/science/article/pii/S0925231222010931) +* Liang M, Liu R W, Zhan Y, et al. Fine-Grained Vessel Traffic Flow Prediction with a Spatio-Temporal Multigraph Convolutional Network[J]. IEEE Transactions on Intelligent Transportation Systems, 2022. [Link](https://ieeexplore.ieee.org/abstract/document/9868210/) +* Zheng H, Li X, Li Y, et al. GCN-GAN: Integrating Graph Convolutional Network and Generative Adversarial Network for Traffic Flow Prediction[J]. IEEE Access, 2022. [Link](https://ieeexplore.ieee.org/abstract/document/9875268/) +* Sun J, Peng M, Jiang H, et al. HMIAN: a Hierarchical Mapping and Interactive Attention Data Fusion Network for Traffic Forecasting[J]. IEEE Internet of Things Journal, 2022. [Link](https://ieeexplore.ieee.org/abstract/document/9863648/) +* Djenouri Y, Belhadi A, Srivastava G, et al. Hybrid graph convolution neural network and branch and bound optimization for traffic flow forecasting[J]. Future Generation Computer Systems, 2022. [Link](https://www.sciencedirect.com/science/article/pii/S0167739X22003028) +* Xiu C, Sun Y, Peng Q. Modelling traffic as multi-graph signals: Using domain knowledge to enhance the network-level passenger flow prediction in metro systems[J]. Journal of Rail Transport Planning & Management, 2022, 24: 100342. [Link](https://www.sciencedirect.com/science/article/pii/S2210970622000427) +* Xu Y, Liu W, Mao T, et al. Multiadaptive Spatiotemporal Flow Graph Neural Network for Traffic Speed Forecasting[J]. Transportation Research Record, 2022: 03611981221116624. [Link](https://journals.sagepub.com/doi/abs/10.1177/03611981221116624) +* Xu G, Hu X. Multi-Dimensional Attention Based Spatial-Temporal Networks for Traffic Forecasting[J]. Wireless Communications and Mobile Computing, 2022, 2022. [Link](https://www.hindawi.com/journals/wcmc/2022/1358535/) +* Huang X, Lan Y, Ye Y, et al. Traffic Flow Prediction Based on Multi-Mode Spatial-Temporal Convolution of Mixed Hop Diffuse ODE[J]. Electronics, 2022, 11(19): 3012. [Link](https://www.mdpi.com/1844588) +* Ge Y, Zhai J F, Su P C. Traffic Flow Prediction Based on Multi-Spatiotemporal Attention Gated Graph Convolution Network[J]. Journal of Advanced Transportation, 2022. [Link](https://www.hindawi.com/journals/jat/2022/2723101/) +* Pan X, Hou F, Li S. Traffic Speed Prediction Based on Time Classification in Combination With Spatial Graph Convolutional Network[J]. IEEE Transactions on Intelligent Transportation Systems, 2022. [Link](https://ieeexplore.ieee.org/abstract/document/9868261/) + * Zhao J, Chen C, Liao C, et al. 2F-TP: Learning Flexible Spatiotemporal Dependency for Flexible Traffic Prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2022. [Link](https://ieeexplore.ieee.org/abstract/document/9703274/) * Qi X, Mei G, Tu J, et al. A Deep Learning Approach for Long-term Traffic Flow Prediction with Multi-factor Fusion Using Spatiotemporal Graph Convolutional Network[J]. IEEE Transactions on Intelligent Transportation Systems, 2022. [Link](https://ieeexplore.ieee.org/document/9875028) @@ -300,6 +314,9 @@ Top journals with paper counts: * Wu Y, Zhang H, Li C, et al. Urban ride-hailing demand prediction with multi-view information fusion deep learning framework[J]. Applied Intelligence, 2022: 1-19. [Link](https://link.springer.com/article/10.1007/s10489-022-03966-7) ## Conference +* Liu Z, Fu K, Liu X. Multi-view Cascading Spatial-Temporal Graph Neural Network for Traffic Flow Forecasting[C]//International Conference on Artificial Neural Networks. Springer, Cham, 2022: 605-616. [Link](https://link.springer.com/chapter/10.1007/978-3-031-15931-2_50) +* Kim D, Cho Y, Kim D, et al. Residual Correction in Real-Time Traffic Forecasting[C]. CIKM, 2022. [Link](https://arxiv.org/abs/2209.05406) + * Li G, Wang X, Njoo G S, et al. A Data-Driven Spatial-Temporal Graph Neural Network for Docked Bike Prediction[C]. IEEE International Conference on Data Engineering (ICDE), 2022. [Link](https://guanyaoli.github.io/files/STGNN-DJD-0110.pdf) * Shen Y, Li L, Xie Q, et al. A Two-Tower Spatial-Temporal Graph Neural Network for Traffic Speed Prediction[C]//Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, Cham, 2022: 406-418. [Link](https://link.springer.com/chapter/10.1007/978-3-031-05933-9_32) @@ -353,6 +370,8 @@ Top journals with paper counts: * Zhuang D, Wang S, Koutsopoulos H, et al. Uncertainty Quantification of Sparse Travel Demand Prediction with Spatial-Temporal Graph Neural Networks[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2022: 4639-4647. [Link](https://dl.acm.org/doi/abs/10.1145/3534678.3539093) ## Preprint +* Roudbari N S, Patterson Z, Eicker U, et al. Simpler is better: Multilevel Abstraction with Graph Convolutional Recurrent Neural Network Cells for Traffic Prediction[J]. arXiv preprint arXiv:2209.03858, 2022. [Link](https://arxiv.org/abs/2209.03858) + * Chen Z, Lu Z, Chen Q, et al. A spatial-temporal short-term traffic flow prediction model based on dynamical-learning graph convolution mechanism[J]. arXiv preprint arXiv:2205.04762, 2022. [Link](https://arxiv.org/abs/2205.04762) * Feng A, Tassiulas L. Adaptive Graph Spatial-Temporal Transformer Network for Traffic Flow Forecasting[J]. arXiv preprint arXiv:2207.05064, 2022. [Link](https://arxiv.org/abs/2207.05064v1)